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ABSTRACT 
An analysis is made on the three dimensional flow past a vertical porous plate in the 
presence of radiation immersed in a porous medium. The solutions have been obtained 
for the velocity and temperature fields, shear stresses and rate of heat transfer using 
perturbation technique. It is found that the main flow velocity decreases with increase in 
radiation parameter for cooling of the plate and increases for heating of the plate. It is 
also found that with increase in radiation parameter, the main flow velocity increases for 
cooling of the plate and the reverse effect is observed for heating of the plate. The 
temperature distribution decreases with the increase of the radiation parameter. The shear 
stresses and the rate of heat transfer, which are of physical interest are presented in the 
form of tables. 
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1. Introduction 
The laminar flow is important for its application in engineering, particularly in 
Aeronautical engineering. The important application is the calculation of friction of 
bodies in a flow, for examples, the drag of a plate at zero incidence, the friction drag of 
ship, an airfoil. It is also important the heat transfer between a body and the fluid around 
it. Singh et al. [1] studied the effect of buoyancy forces on the three dimensional flow and 
heat transfer along a porous vertical plate. Singh et al. [2] also studied the flow of viscous 
incompressible fluid along an infinite porous plate subject to the sinusoidal suction 
velocity distribution fluctuating with time. Sing [3] extended this idea by applying 
transverse sinusoidal suction velocity in the presence of viscous dissipative heat. Sing [4] 
also discussed the effect of magnetic field on the three dimensional flow past a porous 
plate. In the above studies the radiation effect is ignored. It has important application in 
space vehicle re-entry problems. Many processes in engineering areas occur at high 
temperatures and it is important for the design of pertinent equipment. Nuclear power 
plants, gas turbines, and the various propulsion devices for aircraft missiles, satellites and 
space vehicles are example of such engineering areas. At high temperature radiation 
effect can be quite significant. The heating of rooms and buildings by the use of radiators 
is a familiar example of heat transfer by free convection. Heat losses from hot pipes, 
ovens etc surrounded by cooler air, are at least in part due to free convection. Hassan [5] 
and Raptis and Perdikis [6] studied the effect of radiation on the flow of micropolar and 
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viscoelastic fluid respectively. Seddeek [7] also studied the effect of radiation past a 
moving plate with variable viscosity. The effect of radiation on the flow past a vertical 
plate was discussed by Takhar et al. [8]. Rapits [9] also studied the effect of radiation and 
free convection on steady flow past a vertical porous plate through porous medium. 
Sharma et al. [10] studied the effect of radiation on temperature distribution in 
three-dimensional Coutte flow subjected to a periodic suction velocity distribution. 
Recently Guria et al. [11] investigated the effect of radiation on three dimensional flow in 
a vertical channel subjected to a periodic suction.  Guria et al. [12]  studied the effect 
of radiation on three dimensional flow past a vertical porous plate in the presence of 
magnetic field. The aim of this paper is to study the effect of radiation on three 
dimensional flow past a vertical porous plate subject to the periodic suction velocity 
distribution through porous medium.  

 
2. Formulation of the problem  
Consider the unsteady flow of viscous, incompressible fluid past a semi- infinite vertical 

porous plate through porous medium. Here the ∑x -axis is chosen along the vertical plate, 

that is, in the direction of the flow, ∑y - axis is perpendicular to the plate and ∑z - axis is 

normal to the ∑∑yx - plane (Fig.1). All the fluid properties are considered constant 
except the influence of the density variation with temperature is considered only in the 
body force term. The plate is considered to be infinite length, all derivatives with respect 

to *x  vanish and so the physical variables are functions of ,, ** zy  and *t  only.  
 The plate is subjected to a periodic suction velocity distribution of the form 

*
* *

0= 1 cos ,
u z

v V ct
πε

ν
∞

  
− + −  

  
 (1) 

 where 1)(=ε  is the amplitude of the suction velocity. 0V  is the constant suction, 

∞u  is the free stream velocity, ν  is the kinematic coefficient of viscosity and ∑t  is the 

time. Denoting velocity components ∑∑∑ wvu ,,  in the directions −− ∑∑ yx ,  and −∑z  
axes respectively, under Bousinesq approximation, the flow is governed by the following 
equations.  
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 where ρ  is the density of the fluid, ∑p  is the fluid pressure, g  is the acceleration 

due to gravity, β  is the coefficient of thermal expansion, k  is the coefficient of heat 

conduction, pC  is the specific heat at constant pressure *K  is the permeability of the 

porous medium. The equation of conservation of radiative heat transfer per unit volume 
for all wavelength is  

,))()(4(=.
0

λλλλ dGTeTKq hr −∇ ∗∗∞∗
∫  

 where heλ  is the Plank's function and the incident radiation λG  is defined as 

,)(
1

=
4=

ΩΩ∫Ω deG λπλ π
 

 ∗∇ rq.  is the radiative flux divergence and Ω  is the solid angle. Now, for an optically 

thin fluid exchanging radiation with an isothermal flat plate at temperature 0T  and 

according to the above definition for the radiative flux divergence and Kirchhoffs law, the 
incident radiation is given by )(4= 0TeG hλλ  then,  

,))()()((4=. 00
λλλλ dTeTeTKq hhr −∇ ∗∗∞∗

∫  

 Expanding )( ∗TKλ  and )( 0Te hλ  in a Taylor series around 0T , for small )( 0TT −∗ , 

we can rewrite the radiative flux divergence as  
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 where )0(0
= TKK λλ .  

Hence an optical thin limit for a non-gray gas near equilibrium, the following relation 
holds  
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 The boundary conditions of the problem are  
*

* * * * * *
0 0= 0, = 1 cos , = 0, = at = 0,

u z
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.a=,=0,=,=,= 0 ∞→− ∞∞∞
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 Introduce the non-dimensional variables  

,=,=,=,=
2
∞

∞∞

u

p
pctt

zu
z

yu
y

ρνν

∑
∑

∑∑

 

( )** * *

0

= , = , = , = .
T Tu v w

u v w
u u u T T

θ ∞

∞ ∞ ∞ ∞

−

−
 (8) 

 Using (8), equations (2)-(6) become  
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, the radiation parameter, ∞T  and ∞p  are the temperature and pressure 

outside the boundary layer. The boundary conditions (7) become 

( )= 0, = 0, = 1 cos , =1 at = 0,u w v S z t yε π θ−  + −  
,a0=,=0,=1,= ∞→− ysSvwu θ                                  (14) 

 where ∞uVS /= 0  is the suction parameter.  

3. Solution of the problem 

To solve the equations (9)-(13), we assume the solution of the following form 
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.),,(),,()(=),,( 2
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Substituting (15) in equations (9) to (13), comparing the term free from ε  and the 

coefficients of ε  from both sides and neglecting those of 2ε . The term free from ε  
are  
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where the primes denote differentiation with respect to y . 
The boundary conditions become 
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 The solutions of (16)- (18) under the boundary conditions (19) are 
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If 0=F , ∞→K . Then the solution (20) coincides with equation (3.6) of Guria and 
Jana [13]. Equating the coefficient of ε  from both sides, we get  
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 The boundary conditions become  

( )1 1 1 1= 0, = cos , = 0, = 0 at = 0,u v S z t w yπ θ− −
.a0.=0,=0,=0,=0,= 11111 ∞→yspwvu θ  (27) 

 These are the linear partial differential equations describing the three-dimensional flow. 
We assume the velocity components, pressure and temperature distribution in the 
following form  
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 Substituting (28) in (23)-(26), we get the following set of differential equations 
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Particular cases:- 
Case I: When ∞→K , the problem is reduced to the three dimensional flow subject to 
periodic suction in the presence of radiation. In this case 
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Hence the solution becomes  
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Case II: When 0=F , the problem is reduced to the three dimensional flow subject to 
periodic suction through porous medium. Then 
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Hence the solution becomes  
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Case III: When 0=F  and ∞→K , the solution (34)  coincide with the solution 

(3.19) of Guria and Jana [13] . 
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4. Results and discussion 
We have computed the numerical value of the velocity, temperature, shear stresses, and 
rate of heat transfer for different values of the non dimensional parameters and plotted in 
the diagram.The value of dimensionless parameter Gr  is taken positive and negative 
values. The positive value corresponds to an extremely cooled plate by the free 
convection currents and the negative value corresponds to the hotted plate. The value of 
Prandtl number is taken equal to 0.71 and this value corresponds to the air. The values 
of Grashof numbers )(Gr  are taken to be large from the physical point of view. The 
large Grashof number values correspond to free convection problem.The effect of 
radiation parameter, Prandtl number, permeability parameter and suction parameter on 
main flow velocity is shown in Figs.2-5. 
    The effect of radiation parameter F  on the main flow velocity is shown in Fig.2. 
for cooling and heating plate. This figure shows that velocity decreases with the increase 
of the radiation parameter for cooling of the plate and increases for heating of the plate. 
Fig.3. shows the effect of Prandtl number on the main flow velocity profile for both 
cooling and heating of the plate. From Fig.3 we see that for cooling of the plate velocity 
profile decreases whereas these profile increases with the increase of Pr  for heating of 
the plate. 
     Fig.4 shows the effects of permeability parameter on the main flow velocity for 
cooling and heating of the plate. For a cooling plate fluid velocity increases whereas for a 
heating plate it decreases with increase of K . Permeability parameter is the 
measurement of the porosity of the medium. As the porosity of the medium increases, the 
value of K  increases. For large porosity of the medium fluid gets more space to flow as 
a consequence its velocity increases. 
     The effects of suction parameter S  on the main flow velocity is shown in Fig.5. 
From Fig.5 we found that the velocity decreases with increase in suction for cooling of 
the plate and increases for heating of the plate. Thus suction stabilities the boundary layer 
growth. 
     The effects of permeability parameter K  and suction parameter S  on the cross 
flow velocity are shown in Fig.6. It is observed from this figure that both permeability 
parameter and suction parameter have decreasing effect on the cross velocity near to the 
plate while increasing effect away from the plate 
     Fig.7 shows the effect of F  on the temperature profiles. It is clear that 
temperature decrease more rapidly with the increase of F . Therefore using radiation we 
can control the flow characteristic and temperature distribution. 
     The effect of suction parameter and Prandtl number on the temperature profile is 
shown in Fig.8. From Fig.8 we found that temperature decreases with the increase of both 
suction parameter and Prandtl number. The Prandtl number has decreasing effect on the 
temperature profile.It is also found that an increase in Pr  decreases the temperature 
field indicating that the temperature field falls more rapidly for water in comparison to air. 
The phenomenon is that the temperature field remains almost stationary for mercury 
which is most sensible towards change in temperature. This leads to the conclusion that 
mercury is most effective for maintaining temperature differences and can be efficiently 
used in laboratory purposes. The air may replace mercury but the effectiveness of 
maintaining temperature changes is much less than mercury. However, air can be a better 
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and cheap replacement if the temperature is maintained for industrial purposes. 
The non dimensional shear stress component due to main flow can be expressed as 
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 The non dimensional shear stress component due to cross flow can be expressed as 
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The magnitude and the tangent of phase shift of the shear stress due to main flow is 
shown in Table 1 for 0.025.=Pr   

 
   1R    1tanφ−   

 F    1=K  5=K   10=K   1=K  5=K   10=K  
2  7.07 8.83  9.40  5.21  4.15 3.97 
3  6.20 7.72  8.15  5.89  4.84 4.63 
4  5.97 7.26  7.59  6.95  5.73 6.80 
5  5.93 6.98  7.24  8.41  6.80 6.44 

 
Table 1: Variation of magnitude and tangent of phase shift due to main flow 
 

The magnitude of the shear stress increases where the tangent of phase shift decreases 
with increase in permeability parameter. With increase in radiation parameter, the 
magnitude of the shear stress decreases where the tangent of phase shift increases. The 
effect of permeability parameter on magnitude and tangent of phase shift due to cross 
flow is shown in Table 2. 

 
 K R2 -tanφ2 

1 3.91 53.44 
5 3.80 50.17 
10 3.78 49.76 

 
Table 2: Variation of magnitude of tangent of phase shift due to cross flow   

  
It is seen from table that both the magnitude and tangent of phase shift decrease with 
increase in permeability parameter. Now we calculate the rate of heat transfer. The rate of 
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heat transfer at the plate 0=y  is given by  
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θ

+  

We have computed the magnitude and the tangent of phase shift for 0.5=S  and shown 
in Table 3. It is observed from table that both the magnitude and the tangent of phase shift 
decrease with increase in radiation parameter whereas both magnitude and tangent of 
phase shift increase with increase in permeability parameter.  

  

 
Table 3: Variation of magnitude and the tangent of phase shift of the rate of heat transfer 

for S=1.0. 
 

5. Conclusion 
In this paper we have studied the effect of radiation, free convection and permeability of 
the medium on three dimensional flow past a vertical porous plate. The dimensionless 
governing partial differential equations are solved by perturbation technique. The effect 
of non dimensional parameters such as radiation parameter, Prandtl number, permeability 
parameter, Grashof number and suction parameter on velocity and temperature fields are 
studied. Conclusion of the study are follows. 
(i) The momentum and thermal boundary layers are found to thicken when the radiation 
is present. 
(ii) Suction stabilizes the boundary layer growth. 
(iii) The velocity and temperature field falls owing to increase in the Prandtl number. 
(iv) Permeability parameter are leads to the increase of the main velocity profile. 
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 R3 -tanφ2 
K 
F 

1/10            1                  5                   10 1/10               1                 5                  10 

2 0.83         1.02           1.03               1.04 12.98          26.48           31.21          31.97 
3 0.77         0.95            0.97              0.97 9.92             16.29         17.85          18.08 
4 0.73         0.90            0.91               0.92 8.30          12.43             13.30         13.43 
5 0.70        0.85            0.87              0.88 7.26           10.34           10.93           11.01 
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Figure 1: Physical model and Co-ordinates system 

 

Figure 2: Variation of main flow velocity for K=0.5, Pr=0.71, S=1.0, ε=0.05, z=0.0 
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Figure 3: Variation of main flow velocity for F=2.0, S=1.0, K=0.5, ε=0.05, z=0.0. 

 

Figure 4: Variation of main flow velocity for F=2.0, Pr=0.71, S=1.0, ε=0.05,z=0.0. 
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Figure 5: Variation of main flow velocity for F=2.0, Pr=0.71, K=0.5, ε=0.05, 
z=0.0 

 

 

 

Figure 6: Variations of cross flow velocity. 
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Figure 7: Variations of temperature profile θ for S=1.0, K=0.5, Pr=0.71, z=0.0. 
 

 

Figure 8: Variations of temperature profile θ for F=2.0, z=0.0, K=0.5. 
 

 

 


