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ABSTRACT 
In this paper we have considered single objective and multi-objective stochastic 
transportation problem involving an inequality type of constraints in which the source 
and destination parameters are exponential random variables with known means but the 
objectives are non-commensurable and conflicting in nature. At first we convert the 
proposed multi-objective linear stochastic transportation problem into an equivalent 
deterministic problem under chance constrained programming technique. Then fuzzy 
programming technique is applied to solve this problem and obtained the compromise 
solution. A numerical example is illustrated to verify the solution procedure and the 
developed methodology. 
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1. Introduction 
In most mathematical programming problems it is assumed that parameters occurring in 
the model are constant and known, such models are called deterministic. However, 
deterministic models are usually just an approximation of the reality. These models can 
be used to solve the problem in one situation (for one specific set of data values), but the 
solutions obtained from these models may become sub-optimal or infeasible if the 
situation changes. Sometimes variability of the parameters is so significant and their 
evaluation so uncertain (especially if the parameters will be assigned values in the future) 
that treating the deterministic model as a good approximation is not acceptable. Therefore 
Uncertainty in decision problems comes from, for example, weather changes, market-
related uncertainty and competition etc. 

 
2. Single objective stochastic transportation problem involving exponential random 

variables 
Let us consider the single objective stochastic transportation problem involving 
exponential random variables as follows :  
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 subject to  

 miax iiij

n

j

,1,2,=,1][Pr
1=
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 njbx jjij
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,1,2,=,1][Pr
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 njmixij ,1,2,= ,,1,2,= 0, ……≥  (4) 

  

where 1<<0 iα  ,  1<<0 jβ  and ia , jb  are exponential random variables. For 

simplicity, let us consider the decision variables ijx  to be deterministic. 

We shall first consider special cases where only ia  or only jb  are exponential random 

variables before considering the general case in which both ia  and jb  are exponential 

random variables. 
 
Case-I: Only ia  are exponential random variables 

Let ia  are exponential random variables with known means  
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Now the constraint (2) can be represented as 

 miay iii ,1,2,=,1][Pr …α−≥≤  

 which is same as  
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Thus the solution of the single objective stochastic transportation problem stated 

in equations (1) - (4) can be obtained by solving the equivalent deterministic 
programming problem,  

 ijij

n

j

m

i

xcZ ∑∑
1=1=

=:min  (8) 

  subject to  

 mix
ia

i
ij

n

j

,1,2,=,
)(1ln

1=

…

λ
α−−≥∑  (9) 

 njbx jij

m

i

,1,2,= ;
1=

…≥∑  (10) 

 njmixij ,1,2,= ;,1,2,= 0; ……≥  (11) 

 
Case-II: Only jb  are exponential random variables 

Let jb  are exponential random variables with known means  
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Now the probabilistic constraint (3) can be rewritten as 
 
 njby jjj ,1,2,=,1][Pr …β−≥≥  

 which is same as  
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 njbbf jjj
jy

,1,2,=,1d )( …β−≥⇒ ∫ ∞−
 (13) 

 Now  

jj
jy

bbf d )(∫ ∞− jj
jy

bbf d )((=
0∫ j

jb
jbjy

jb be d =
0

λ
λ

−

∫
jyjb

jb
e 0][=

λ−

−
jy

jb
e

λ−

−1=  

 
Thus equation (13) becomes 
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Therefore, we obtain the equivalent single objective deterministic transportation 

problem of the stochastic transportation problem (1) - (4) as follows:  
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Case- III: Both ia  and jb  are exponential random variables 

Let ia  and jb  are exponential random variables with known means defined as:  
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As described in Case- I and Case- II, the equivalent deterministic constraints of the 
probabilistic constraints (2) and (3) are defined by  
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 and hence the equivalent single objective deterministic transportation problem of the 
stochastic transportation problem (1) - (4) can be formulated as:  
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3.  Multi-objective stochastic transportation problem involving exponential random 

variables 
Let us consider the multiobjective stochastic unbalanced transportation problem with 
source and demand constraints involving exponential random variables as follows :  
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 where 1<<0 iα  ,  1<<0 jβ  and ia , jb  are exponential random variables. For 

simplicity, let us consider the decision variables ijx  to be deterministic. 

Case-I: Only ia  are exponential random variables 

Let ia  are exponential random variables with known means  
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 As discussed earlier, the probabilistic constraint (22) reduced to  
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 Hence the equivalent deterministic transportation problem for the multiobjective 
stochastic transportation problem (21) - (24)becomes  
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Case-II: Only jb  are exponential random variables 

Given jb  are exponential random variables with means  
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 Now we obtain the equivalent deterministic constraint for (23) as  
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 and hence the multiobjective deterministic transportation problem of the multiobjective 
stochastic transportation problem (21) - (24) is formulated as:  
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Case-III: Both ia  and jb  are exponential random variables 

Let ia  and jb  are both exponential random variables with known means  
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 In this case the equivalent multi-objective deterministic transportation problem of the 
stochastic transportation problem (21) - (24) is given as:  
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4. Numerical example 
The numerical problem is related to a multi-objective stochastic transportation problem in 
which the source and destination parameters are exponential random variables with 
known means given by  

 1,2,3,4= ,
1

=][ iaE
ia

i λ
 

and  

 1,2,3,4,5.= ,
1

=][ jbE
jb

j λ
 

The objectives are non-commensurable and conflicting in nature. 
 

252423222115141312111 57737969129=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 221196311956 xxxxxxxxxx ++++++++++  (37) 

  

252423222115141312112 25994892=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 896825488 xxxxxxxxxx ++++++++++  (38) 

  

252423222115141312113 2948463642=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 369663535 xxxxxxxxxx ++++++++++  (39) 

  
subject to  
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In the above numerical example, ia  and jb  are independent exponential random 

variables with known means 
5,=][ 1aE         4,=][ 2aE         8,=][ 3aE         10,=][ 4aE        
2,=][ 1bE         20,=][ 2bE       5,=][ 3bE          6,=][ 4bE         3=][ 5bE   

And the specified probability levels  
0.60,=1α        0.70,=2α        0.80,=3α          0.90,=4α  
0.10,=1β        0.20,=2β         0.30,=3β         0.40,=4β          0.50=5β  

 
The deterministic model can be obtained using equations (33)-(35) as 

 

252423222115141312111 57737969129=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 221196311956 xxxxxxxxxx ++++++++++  (50) 

252423222115141312112 25994892=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 896825488 xxxxxxxxxx ++++++++++  (51) 

 252423222115141312113 2948463642=:min xxxxxxxxxxZ +++++++++  

  45444342413534333231 369663535 xxxxxxxxxx ++++++++++  (52) 

 
subject to  

 4.5814541514131211 ≥++++ xxxxx  (53) 
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  4.8158912524232221 ≥++++ xxxxx  (54) 

  12.8755033534333231 ≥++++ xxxxx  (55) 

  23.0258514544434241 ≥++++ xxxxx  (56) 

  4.6051741312111 ≤+++ xxxx  (57) 

  32.18875842322212 ≤+++ xxxx  (58) 

  6.01986443332313 ≤+++ xxxx  (59) 

  5.49774444342414 ≤+++ xxxx  (60) 

  2.07944245352515 ≤+++ xxxx  (61) 

  1,2,3,4.= 1,2,3;= , 0 jixij ≥  (62) 

 
As discussed in the solution procedure, we obtained three ideal solutions of the objective 
functions (50)-(52) with the set of constraints (53)-(62) and a pay off matrix is framed as 
shown in the following table. 

 
Table  1: Pay-off Matrix 

      )(1 XZ    )(2 XZ    )(3 XZ   
(1)X    260.435061    254.943643    248.437456   
(2)X    322.335967    183.474493    252.875062  
(3)X    318.876828    238.696511    216.39911   

  
Using the linear membership function of fuzzy technique, we get 
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Finally, the single objective transportation problem which is equivalent to the 
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multiobjective problem (37)-(49) is derived as: 
 
 λ:max  (66) 

 subject to 

25242322211514131211 57737969129 xxxxxxxxxx +++++++++  
45444342413534333231 221196311956 xxxxxxxxxx ++++++++++  

  322.33596761.900906 ≤+ λ   (67) 
  
 25242322211514131211 25994892 xxxxxxxxxx +++++++++  
 45444342413534333231 896825488 xxxxxxxxxx ++++++++++  

  254.94364371.469150 ≤+ λ   (68) 
   

 25242322211514131211 2948463642 xxxxxxxxxx +++++++++  
 45444342413534333231 369663535 xxxxxxxxxx ++++++++++  

  252.87506236.475952 ≤+ λ   (69) 
   
 4.5814541514131211 ≥++++ xxxxx  (70) 

  4.8158912524232221 ≥++++ xxxxx  (71) 

  12.8755033534333231 ≥++++ xxxxx  (72) 

  23.0258514544434241 ≥++++ xxxxx  (73) 

  4.6051741312111 ≤+++ xxxx  (74) 

  32.18875842322212 ≤+++ xxxx  (75) 

  6.01986443332313 ≤+++ xxxx  (76) 

  5.49774444342414 ≤+++ xxxx  (77) 

  2.07944245352515 ≤+++ xxxx  (78) 

  1,2,3,4.= 1,2,3;= , 0 jixij ≥  (79) 

 
Solving the above linear programming problem (66) - (79), the compromise solution is 
obtained as : 

0.4830865=λ    
0,2.902399=,0,1.679055=,0 1514131211 === xxxxx    

0===,4.342910=,0.4729809= 2524232221 xxxxx      

0===,12.87550=,0 3534333231 xxxxx =  

2.079442=,2.595345=,6.019864=,8.199011=,4.132189= 4544434241 xxxxx

     
5. Conclusions 
In this paper we have formulated single objective and multi-objective stochastic 
unbalanced transportation problems in which the objective functions are of minimization 
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type and either the supply or the demand or both the supply and demand are considered 
as exponential random variables of known means. For simplicity we have considered the 
decision variables to be deterministic. Then using the probability density functions, the 
probabilistic linear programming model is transformed in to an equivalent deterministic 
linear programming model. We have applied the fuzzy programming technique for 
solving the given specified problem and to obtain an optimal compromise solution from 
the set of non dominated solutions. 
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