Journal of Physical Sciences, Vol. 19, 2014, 59-66 ISSN: 2350-0352 (print), www.vidyasagar.ac.in/journal Published on 26 December 2014

On Intuitionistic Fuzzy T₁-Spaces

Estiaq Ahmed^{*}, M.S. Hossain¹ and D. M. Ali¹

*Department of Mathematics, Meherpur Government College Meherpur-7100, Bangladesh ¹Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh

Received 11 May 2014; accepted 30 August 2014

ABSTRACT

The basic concepts of the theory of intuitionistic fuzzy topological spaces have been defined by D. Coker and his co-workers. In this paper, we define some new notions of T_1 –spaces using intuitionistic fuzzy sets. We also show all of these good extensions property. Furthermore, we study some relations among them. Moreover, some of their other properties are obtained.

Keywords: Intuitionistic topological space, intuitionisticfuzzy topological space, intuitionistic fuzzy T_1 -spaces.

1. Introduction

After the introduction of fuzzy sets by Zadeh [16] in 1965 and fuzzy topology by Chang [6] in 1968, several researches were conducted on the generalization of the notions of the fuzzy sets and topology. The concepts of intuitionistic fuzzy sets was introducedby Atanassov [1, 2] as a generalization of fuzzy sets. Coker [3, 4, 5, 7, 8, 9, 10] and his colleagues introduced intuitionistic fuzzy topological spaces by using intuitionistic fuzzy sets. In this paper, we investigate the properties and features of T_1 –spaces.

Definition 1.1. [10] An intuitionistic set A is an object having the form $A=(x, A_1, A_2)$ where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi$. The set A_1 is called the set of member of A while A_2 is called the set of non-member of A.

Throughout this paper, we use the simpler notation $A = (A_1, A_2)$ for an intuitionistic set.

Remark 1.2. [10] Every subset A on a nonempty setX may obviously be regarded as an intuitionistic set having the form $A' = (A, A^C)$, where $A^C = X \setminus A$ is the complement of A in X.

Definition 1.3. [10] Let the intuitionistic sets A and B on X be of the forms $A = (A_1, A_2)$ and $B = (B_1, B_2)$ respectively. Furthermore, let $\{A_i : j \in J\}$ be an arbitrary family of intuitionistic sets in X, where $A_j = (A_j^{(1)}, A_j^{(2)})$. Then

- (a) $A \subseteq B$ if and only if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$. (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Estiaq Ahmed, M.S.Hossain and D.M.Ali

- (c) $\bar{A} = (A_2, A_1)$, denotes the complement of A.
- (c) $\square (i_{2}^{(1)}, i_{3}^{(1)}, \bigcup A_{j}^{(2)}).$ (c) $\bigcup A_{j} = (\bigcup A_{j}^{(1)}, \bigcap A_{j}^{(2)}).$
- (f) $\phi_{\sim} = (\phi, X)$ and $X_{\sim} = (X, \phi)$.

Definition: 1.4. (cf [7]) An intuitionistic topology on a set X is a family τ of intuitionistic sets in X satisfying the following axioms:

- (1) $\phi_{\sim}, X_{\sim} \in \tau$.
- (2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$.
- (3) $\cup G_i \in \tau$ for any arbitrary family $G_i \in \tau$.

In this case, the pair (X, τ) is called an intuitionistic topological space (ITS, in short) and any intuitionistic set in τ is known as an intuitionistic open set (IOS, in short) in X.

Definition 1.5. [2] Let X be a non empty set and I be the unit interval [0,1]. An intuitionistic fuzzy set A (IFS, in short) in X is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)), x \in X\}$, where $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership and the degree of non-membership respectively, and $\mu_A(x) + \nu_A(x) \le 1$.

Let I(X) denote the set of all intuitionistic fuzzy sets in X. Obviously every fuzzy set μ_A in *X* is an intuitionistic fuzzy set of the form (μ_A , $1 - \mu_A$).

Throughout this paper, we use the simpler notation $A = (\mu_A, \nu_A)$ instead of $A = \{ (x, \mu_A(x), \nu_A(x)), x \in X \}.$

Definition 1.6. [2] Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy sets in X. Then

- (1) $A \subseteq B$ if and only if $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B if and only if $A \subseteq B$ and $B \subseteq A$.
- (3) $A^{c} = (v_{A}, \mu_{A}).$
- (4) $A \cap B = (\mu_A \cap \mu_B; \nu_A \cup \nu_B).$
- (5) $A \cup B = (\mu_A \cup \mu_B; \nu_A \cap \nu_B).$
- (6) $0_{\sim} = (0^{\sim}, 1^{\sim})$ and $1_{\sim} = (1^{\sim}, 0^{\sim})$.

Definition 1.7. [8] An intuitionistic fuzzy topology (IFT, in short) on X is a family t of IFS's in X which satisfies the following axioms:

- (1) $0_{\sim}, 1_{\sim} \in t$.
- (2) if A_1 , $A_2 \in t$, then $A_1 \cap A_2 \in t$.
- (3) If $A_i \in t$ for each i, then $\bigcup A_i \in t$.

The pair (X, t) is called an intuitionistic fuzzy topological space (IFTS, in short).

Let (X, t) be an IFTS. Then any member of t is called an intuitionistic fuzzy open set (IFOS, in short) in X. The complement of an IFOS in X is called an intuitionistic fuzzy closed set (IFCS, in short) in X.

2. Intuitionistic fuzzy T_1 –spaces

Definition 2.1. An intuitionistic fuzzy topological space (X, t) is called

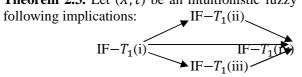
On Intuitionistic Fuzzy T_1 Spaces

- (1) IF $-T_1$ (i) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x)=1, \nu_A(x)=0; \mu_A(y)=0, \nu_A(y)=1$ and $\mu_B(y)=1, \nu_B(y)=0; \mu_B(x)=0, \nu_B(x)=1$.
- (2) IF $-T_1$ (ii) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) > 0$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) > 0$.
- (3) IF $-T_1$ (iii) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) = 1$ and $\mu_B(y) > 0, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) = 1$.
- (4) IF $-T_1(iv)$ if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) > 0$ and $\mu_B(y) > 0, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) > 0$.

Definition 2.2. Let $\alpha \in (0, 1)$. An intuitionistic fuzzy topological space (X, t) is called

- (a) $\alpha \text{IF} T_1$ (i) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha \text{ and } \mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha$.
- (b) $\alpha \text{IF} T_1$ (ii) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) \ge \alpha, \nu_A(x) = 0; \ \mu_A(y) = 0, \nu_A(y) \ge \alpha \text{ and } \mu_B(y) \ge \alpha, \nu_B(y) = 0; \ \mu_B(x) = 0, \nu_B(x) \ge \alpha$.
- (c) $\alpha \text{IF} T_1$ (iii) if $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) > 0, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha \text{ and } \mu_B(y) > 0, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha$.

Theorem 2.3. Let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications: $IF-T_1(ii)$



Proof: Suppose(*X*, *t*) is IF- $T_1(i)$ space. We shall prove that (*X*, *t*) is IF- $T_1(i)$. Since (*X*, *t*) is IF- $T_1(i)$, then $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) = 1$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) = 1$ $\Rightarrow \mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) > 0$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) > 0$. Which is IF- $T_1(i)$. Hence IF- $T_1(i) \Rightarrow$ IF- $T_1(i)$. Again, suppose(*X*, *t*) is IF- $T_1(i)$ space. We shall prove that (*X*, *t*) is IF- $T_1(i)$. Since (*X*, *t*) is IF- $T_1(i)$, then $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) = 1$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) = 1 \Rightarrow \mu_A(x) > 0, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) = 1$ and $\mu_B(y) > 0, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) = 1$. Which is IF- $T_1(ii)$. Hence IF- $T_1(i) \Rightarrow$ IF- $T_1(ii)$.

Furthermore, it can easily verify that $IF - T_1(i) \Longrightarrow IF - T_1(iv)$, $IF - T_1(ii) \Longrightarrow IF - T_1(iv)$ and $IF - T_1(iv) \Rightarrow IF - T_1(iv)$.

Noneofthereverse implications is true in generalwhich can be seen from the following examples.

Example 2.3.1. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.7), (y, 1, 0)\}$. We see that the IFTS (X, t) is IF- $T_1(i)$ but not IF- $T_1(i)$.

Example 2.3.2. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.6, 0)\}$. We see that the IFTS (X, t) is IF- $T_1(ii)$ but not IF- $T_1(i)$.

Example 2.3.3. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0, 0.6), (y, 1, 0)\}$. We see that the IFTS (X, t) is IF- $T_1(ii)$ but not IF- $T_1(ii)$.

Example 2.3.4. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.3, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.5, 0)\}$. We see that the IFTS (X, t) is IF- $T_1(ii)$ but not IF- $T_1(ii)$.

Theorem 2.4. Let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:

$$\alpha$$
 -IF- $T_1(i)$ α -IF- $T_1(ii)$ α -IF- $T_1(ii)$

Proof: Suppose (X, t) is $\alpha - \text{IF} - T_1$ (i) space. We shall prove that (X, t) is $\alpha - \text{IF} - T_1(\text{ii})$. Let $\alpha \in (0, 1)$. Since (X, t) is $\alpha - \text{IF} - T_1(\text{i})$, then $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha$

 $\Rightarrow \mu_A(x) \ge \alpha, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha \text{ and } \mu_B(y) \ge \alpha, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha \text{ for any } \alpha \in (0, 1), \text{ which is } \alpha - \text{IF} - T_1(\text{ii}). \text{ Hence } \alpha - \text{IF} - T_1(\text{i}) \Rightarrow \alpha - \text{IF} - T_1(\text{ii}).$

Again, suppose(X, t) is IF- $T_1(ii)$ space. We shall prove that (X, t) is $\alpha - IF - T_1(ii)$.Let $\alpha \in (0, 1)$. Since (X, t) is $\alpha - IF - T_1(ii)$, then $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) \ge \alpha, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha$ and $\mu_B(y) \ge \alpha, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha \implies \mu_A(x) > 0, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \ge \alpha$ and $\mu_B(y) > 0, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \ge \alpha$ for any $\alpha \in (0, 1)$. Which is $\alpha - IF - T_1(ii)$. Hence $\alpha - IF - T_1(ii) \implies \alpha - IF - T_1(ii)$.

Furthermore, it can easily verify that $\alpha - IF - T_1(i) \Rightarrow \alpha - IF - T_1(iii)$.

None of thereverse implications is true in general which can be seen from the following examples.

Example 2.4.1. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.4), (y, 0.4, 0)\}$. For $\alpha = 0.3$, we see that the IFTS (X, t) is $\alpha - \text{IF} - T_1(\text{ii})$ but not $\alpha - \text{IF} - T_1(\text{i})$.

Examples 2.4.2. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0, 0.5), (y, 0.3, 0)\}$. For $\alpha = 0.4$, we see that the IFTS (X, t) is $\alpha - IF - T_1(ii)$ but not $\alpha - IF - T_1(ii)$.

Theorem 2.5. Let (*X*, *t*) be an intuitionistic fuzzy topological space and $0 < \alpha \le \beta < 1$, then

On Intuitionistic Fuzzy T_1 Spaces

(a) β -IF- $T_1(i) \Rightarrow \alpha$ -IF- $T_1(i)$. (b) β -IF- $T_1(ii) \Rightarrow \alpha$ -IF- $T_1(ii)$. (c) β -IF- $T_1(iii) \Rightarrow \alpha$ -IF- $T_1(iii)$.

Proof (a): Suppose the intuitionistic fuzzy topological space (X, t) is β –IF– $T_1(i)$.We shall prove that (X, t) is α –IF– $T_1(i)$.Since (X, t) is β –IF– $T_1(i)$, then $\forall x, y \in X, x \neq y$ with $\beta \in (0, 1) \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0$; $\mu_A(y) = 0, \nu_A(y) \geq \beta$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \geq \beta \implies \mu_A(x) = 1\nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \geq \alpha$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) \geq \alpha$ as $0 < \alpha \leq \beta < 1$, which is α –IF– $T_1(i)$. Hence β –IF– $T_1(i) \implies \alpha$ –IF– $T_1(i)$.

Furthermore, it can easily verify that β –IF– T_1

(ii) $\Rightarrow \alpha - \text{IF} - T_1(\text{ii}) \text{ and } \beta - \text{IF} - T_1(\text{iii}) \Rightarrow \alpha - \text{IF} - T_1(\text{iii}).$

None of the reverse implications is true in general which can be seen from the following examples.

Example 2.5.1. Let $X = \{x, y\}$ and let *t* be the intuitionistic fuzzy topology on *X* generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.6)\}$ and $B = \{(x, 0, 0.5), (y, 1, 0)\}$. For $\alpha = 0.5$ and $\beta = 0.7$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(i)$ but not $\beta - \text{IF} - T_1(i)$.

Example 2.5.2. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.6), (y, 0.7, 0)\}$. For $\alpha = 0.5$ and $\beta = 0.8$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(\text{ii})$ but not $\beta - \text{IF} - T_1(\text{ii})$.

Example 2.5.3. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0, 0.5), (y, 0.3, 0)\}$. For $\alpha = 0.4$ and $\beta = 0.6$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(\text{iii})$ but not $\beta - \text{IF} - T_1(\text{iii})$.

Theorem 2.6. Let(*X*, *t*)be an intuitionistic fuzzy topological space, $U \subseteq X$ and $t_U = \{A | U : A \in t\}$ and $\alpha \in (0, 1)$, then

(a) (X, t) is $\text{IF}-T_1(i) \Rightarrow (U, t_U)$ is $\text{IF}-T_1(i)$. (b) (X, t) is $\text{IF}-T_1(ii) \Rightarrow (U, t_U)$ is $\text{IF}-T_1(ii)$. (c) (X, t) is $\text{IF}-T_1(iii) \Rightarrow (U, t_U)$ is $\text{IF}-T_1(iii)$. (d) (X, t) is $\text{IF}-T_1(iv) \Rightarrow (U, t_U)$ is $\text{IF}-T_1(iv)$. (e) (X, t) is $\alpha - \text{IF}-T_1(i) \Rightarrow (U, t_U)$ is $\alpha - \text{IF}-T_1(i)$. (f) (X, t) is $\alpha - \text{IF}-T_1(ii) \Rightarrow (U, t_U)$ is $\alpha - \text{IF}-T_1(ii)$. (g) (X, t) is $\alpha - \text{IF}-T_1(ii) \Rightarrow (U, t_U)$ is $\alpha - \text{IF}-T_1(ii)$.

The proofs (a), (b), (c), (d), (e), (f), (g) are similar. As an example we proved (e).

Proof (e): Suppose (X, t) is an intuitionistic fuzzy topological space and is also $\alpha - \text{IF} - T_1(i)$. We shall prove that (U, t_U) is $\alpha - \text{IF} - T_1(i)$. Let $x, y \in U, x \neq y$ then $x, y \in X, x \neq y$ as $U \subseteq X$. Since (X, t) is $\alpha - \text{IF} - T_1(i)$, then $\exists A = (\mu_A, \nu_A)$, $B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) \geq \alpha$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0$

Estiaq Ahmed, M.S.Hossain and D.M.Ali

 $0, v_B(x) \ge \alpha \Longrightarrow \mu_A | U(x) = 1, v_A | U(x) = 0; \mu_A | U(y) = 0, v_A | U(y) \ge \alpha \text{ and } \mu_B | U(y) = 1, v_B | U(y) = 0; \mu_B | U(x) = 0, v_B | U(x) \ge \alpha$. Since $\{(\mu_A | U, v_A | U), (\mu_B | U, v_B | U)\} \in t_U \Longrightarrow \{(B | U, C | U)\} \in t_U$. Hence, it is clear that the intuitionistic fuzzy topological space (U, t_U) is $\alpha - IF - T_1(i)$.

Definition 2.7. An intuitionistic topological space (ITS, in short) (X, τ) is called intuitionistic T_1 –space (I– T_1 space) if $\forall x, y \in X, x \neq y \exists C = (C_1, C_2), D = (D_1, D_2) \in \tau$ such that $x \in C_1, y \in C_2$ and $y \in D_1, x \in D_2$.

Theorem 2.8. Let (X, τ) be an intuitionistic topological space and let (X, t) be an intuitionistic fuzzy topological space. Then we have the following implications:

Proof: Suppose (X, τ) is $I - T_1$ space. We shall prove that (X, t) is $IF - T_1(i)$. Since (X, τ) is $I - T_1$, then $\forall x, y \in X, x \neq y \exists C = (C_1, C_2), D = (D_1, D_2) \in \tau$ such that $x \in C_1, y \in C_2$ and $y \in D_1, x \in D_2 \implies 1_{C_1}(x) = 1, 1_{C_2}(y) = 1$ and $1_{D_1}(y) = 1, 1_{D_2}(x) = 1$. Let $1_{C_1} = \mu_A, 1_{C_2} = v_A, 1_{D_1} = \mu_B, 1_{D_2} = v_B$ then $\mu_A(x) = 1, v_A(x) = 0; \mu_A(y) = 0, v_A(y) = 1$ and $\mu_B(y) = 1, v_B(y) = 0; \mu_B(x) = 0, v_B(x) = 1$. Since $\{(\mu_A, v_A), (\mu_B, v_B)\} \in t \implies (X, t)$ is $IF - T_1(i)$. Hence $I - T_1 \implies IF - T_1(i)$.

Conversely, suppose (X, t) is IF $-T_1(i)$. We shall show that (X, τ) is $I - T_1$. Since (X, t) is IF $-T_1(i)$, then $\forall x, y \in X, x \neq y \exists A = (\mu_A, \nu_A), B = (\mu_B, \nu_B) \in t$ such that $\mu_A(x) = 1, \nu_A(x) = 0; \mu_A(y) = 0, \nu_A(y) = 1$ and $\mu_B(y) = 1, \nu_B(y) = 0; \mu_B(x) = 0, \nu_B(x) = 1$. Let $C_1 = \mu_A^{-1}\{1\}, C_2 = \nu_A^{-1}\{1\}, D_1 = \mu_B^{-1}\{1\}, D_2 = \nu_B^{-1}\{1\} \implies x \in C_1, y \in D_2$ and $y \in D_1, x \in D_2$. Since $\{(C_1, C_2), (D_1, D_2)\} \in \tau \implies (X, \tau)$ is $I - T_1$. Hence IF $-T_1(i) \implies I - T_1$. Therefore $I - T_1 \Leftrightarrow IF - T_1(i)$.

Furthermore, it can asily verify that $I - T_1 \Rightarrow IF - T_1(ii)$, $I - T_1 \Rightarrow IF - T_1(iii)$ and $I - T_1 \Rightarrow IF - T_1(iv)$.

None of the reverse implications is true in general which can be seen from the following examples.

Examples 2.8.1. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.4)\}$ and $B = \{(x, 0, 0.5), (y, 1, 0)\}$, it is clear that the IFTS (X, t) is IF- T_1 (ii) but not corresponding I- T_1 .

Examples 2.8.2. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 1)\}$ and $B = \{(x, 0, 1), (y, 0.6, 0)\}$, it is clear that the IFTS (X, t) is IF- $T_1(iii)$ but not corresponding I- T_1 .

On Intuitionistic Fuzzy T_1 Spaces

Examples 2.8.3. Let $X = \{x, y\}$ and t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.2, 0), (y, 0, 0.3)\}$ and $B = \{(x, 0, 0.4), (y, 0.6, 0)\}$, it is clear that the IFTS (X, t) is IF $-T_1(iv)$ but not corresponding I $-T_1$.

Theorem 2.9. Let (X, τ) be an intuitionistic topological space and let (X, t) be the intuitionistic fuzzy topological space. Then we have the following implications:

$$I - T_1 \xrightarrow{\qquad \qquad } \alpha - IF - T_1(i)$$

$$\alpha - IF - T_1(i)$$

$$\alpha - IF - T_1(i)$$

Proof: Let $\alpha \in (0, 1)$. Suppose (X, τ) is $I - T_1$ space. We shall prove that (X, t) is $\alpha - IF - T_1(i)$. Since (X, τ) is $I - T_1$, then $\forall x, y \in X, x \neq y \exists C = (C_1, C_2), D = (D_1, D_2) \in \tau$ such that $x \in C_1, y \in C_2$ and $y \in D_1, x \in D_2 \Rightarrow 1_{C_1}(x) = 1, 1_{C_2}(y) = 1$ and $1_{D_1}(y) = 1, 1_{D_2}(x) = 1 \Rightarrow 1_{C_1}(x) = 1, 1_{C_2}(y) \geq \alpha$ and $1_{D_1}(y) = 1, 1_{D_2}(x) \geq \alpha$ for any $\alpha \in (0, 1)$. Let $1_{C_1} = \mu_A, 1_{C_2} = v_A, 1_{D_1} = \mu_B, 1_{D_2} = v_B$ then $\Rightarrow \mu_A(x) = 1, v_A(x) = 0; \mu_A(y) = 0, v_A(y) \geq \alpha$ and $\mu_B(y) = 1, v_B(y) = 0; \mu_B(x) = 0, v_B(x) \geq \alpha$ for any $\alpha \in (0, 1)$. Since $\{(\mu_A, v_A), (\mu_B, v_B)\} \in t \Rightarrow (X, t)$ is $\alpha - IF - T_1(i)$. Hence $I - T_1 \Rightarrow \alpha - IF - T_1(i)$.

None of the reverse implications is true in general which can be seen from the following examples.

Example 2.9.1. Let $X = \{x, y\}$ and let *t* be the intuitionistic fuzzy topology on *X* generated by $\{A, B\}$ where $A = \{(x, 1, 0), (y, 0, 0.7)\}$ and $B = \{(x, 0, 0.8), (y, 1, 0)\}$. For $\alpha = 0.7$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(i)$ but not corresponding I - T_1 .

Example 2.9.2. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.5, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.6), (y, 0.6, 0)\}$. For $\alpha = 0.4$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(\text{ii})$ but not corresponding I- T_1 .

Example 2.9.3. Let $X = \{x, y\}$ and let t be the intuitionistic fuzzy topology on X generated by $\{A, B\}$ where $A = \{(x, 0.3, 0), (y, 0, 0.5)\}$ and $B = \{(x, 0, 0.5), (y, 0.4, 0)\}$. For $\alpha = 0.4$, it is clear that the IFTS (X, t) is $\alpha - \text{IF} - T_1(\text{iii})$ but not corresponding I - T_1 .

REFERENCES

- 1. K.T.Atanassov, Review and new results on intuitionistic fuzzy sets, *Preprint MFAIS*-1-88, Sofia, (1988), 1-8.
- 2. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986) 87-96.
- 3. S.Bayhan and D.Coker, On T_1 and T_2 separation axioms in intuitionistic fuzzy topological space, *J. Fuzzy Mathematics*, 11(3) (2003) 581-592.
- 4. S.Bayhan and D.Coker, On separation axioms in intuitionistic topological space, *Int. J. of Math. Sci.*, 27 (10) (2001) 621-630.
- 5. S.Bayhan and D.Coker, On fuzzy separation axioms in intuitionistic fuzzy topological space, *BUSEFAL*, 67 (1996) 77-87.

Estiaq Ahmed, M.S.Hossain and D.M.Ali

- 6. C.L.Chang, Fuzzy topological space, J.Math. Anal. Appl., 24 (1968) 182-190.
- 7. D.Coker, An introduction to intuitionistic topological space, *BUSEFAL*, 81 (2000) 51-56.
- 8. D.Coker, An introduction to intuitionistic fuzzy topological space, *Fuzzy sets and Systems*, 88 (1997) 81-89.
- 9. D.Coker, An introduction to fuzzy subspace in intuitionistic fuzzy topological space, *J. Fuzzy Math.*, 4 (1996) 749-764.
- 10. D.Coker, A note on intuitionistic sets and intuitionistic points, TU J. Math. 20(3) (1996) 343-351.
- 11. D.Coker and M.Demirci, On intuitionistic fuzzy points, *Notes on IFS*, 1(2)(1995) 79–84.
- 12. M.S.Hossain and D.M.Ali, Fuzzy normality and some of its α-forms, *Journal of Physical Sciences, Vol.* 14, 2010, 87-94
- 13. R.Muthuraj, K.H.Manikandan and P.M.S.Selvam, Intuitionistic Q-fuzzy normal HX group, *Journal of Physical Sciences*, 15 (2011) 95-102
- 14. S.J.Lee and E.P.Lee, Intuitionistic fuzzy proximity spaces, *IJMMS*, 49 (2004) 2617-2628.
- 15. S.J.Lee and E.P.Lee, The category of intuitionistic fuzzy topological space, *Bull. Korean Math. Soc.*, 37(1) (2000) 63-76.
- 16. L.A.Zadeh. Fuzzy sets, Information and Control, 8 (1965) 338-353.