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ABSTRACT 

In this paper we prove the existence, uniqueness of a mild solution of mixed Volterra-
Fredholm functional integrodifferential equation of Sobolev type with nonlocal condition. 
The results are established by using the semigroup theory and the Banach fixed point 
theorem. 
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1.  Introduction 
Byszewski and Acka [6] established the existence, uniqueness and continuous 
dependence of a mild solution of a semilinear functional differential equation with 
nonlocal condition of the form 
                    ′ , ,       0, ,  

                    , … . , ,        , 0 , 

where 0  ,  is the infinitesimal generator of a  
semigroup of operators on a general Banach space, ,  and  are given functions and 

 for  0, , , 0 . 
 In this paper, we shall prove the existence and uniqueness of a mild solution for a 
mixed Volterra-Fredholm functional integrodifferential equation of Sobolev type with 
nonlocal condition of the form  

′ , , , , , , , , 0, ,                     1  

, … . , ,        , 0 ,                                                          2  



Kamalendra Kumar and Rakesh Kumar 

70 
 

where  and  are linear operators with domains contained in a Banach space  and 
range contained in a Banach space , , 0 , , : ,   

:  and , : . 
 The work on abstract nonlocal semilinear initial value problems was initiated by 
Byszewski [7, 8]. Such problems with nonlocal conditions have been extensively studied 
in the literature [1, 3, 4, 9, 10, 11, 14]. Sobolev type equations arise in various 
applications such as in the flow of fluid through fissured rocks, thermodynamics and 
shear in the second order fluids. For more details, we refer to [5, 11, 12]. Recently, 
Xiaoping Xu [13] studied the existence for delay integrodifferential equations of sobolev 
type with nonlocal conditions by using the theory of semigroup and the method of fixed 
points. Balachandran and Park [2] established the existence and uniqueness of a mild 
solution of a functional integrodifferential equation of Sobolev type with nonlocal 
condition using the theory of semigroup and the Banach fixed point principle. In this 
paper, we generalize the results of Balachandran and Park [2] for a mixed Volterra-
Fredholm functional integrodifferential equation of Sobolev type with nonlocal condition.  
 
2. Preliminaries 
In order to prove our main theorem we consider some conditions on the operators  and 

. Let  and  be Banach space with norm |. | and .  respectively. The operators 
:  and :  satisfy the assumptions which are given below: 

  and  are closed linear operators, 

  and  is bijective, 

  :  is continuous. 

 From the above fact and the closed graph theorem imply the boundedness of the 
linear operators : . Again –  generates a uniformly continuous 
semigroup , 0 and so max ,  is finite. In  this   continuation  the 
operator norm  .   will  be  denoted  by  . . Consider  , 0 , 0,  and 

, 0 , ,  , , ,  0, , . We denote 
max , ,  and . We make the following hypothesis: 

  For every , ,  and 0, , . , , , . 

  There exists a constant 0 such that 

, , , , , ,
, , , , , ,  

for , , , , , , 0, . 

   There exists a constant 0 such that 

 , , , , , , , for , , 0, . 

  There exists a constant 0 such that 



Nonlocal Cauchy Problem for Sobolev Type Mixed Volterra-Fredholm Functional 
Integrodifferential Equation 

71 
 

 , , , , , , , for , , 0, . 

  Let :  and there exists a constant 0 such that 

              , … . , , … . , , 

 for , , , 0 . 

 1. 

A function  satisfying 

(i)  0 , … . , 0   

                , , , , , , , , 0, , 

(ii) , … . , ,        , 0  

is called a mild solution of the nonlocal Cauchy problem (1) – (2). 

3. Existence of a mild solution 
Theorem 3.1: Consider that the assumptions  holds and the functions , ,  
and  satisfy the conditions . Then the nonlocal Cauchy problem (1) – (2) 
has a unique mild solution. 
Proof: Define an operator  on the Banach space  by the formula 

  

         

, … . , , , 0                                                       

0 , … . , 0                                        

 , , , , , , , , 0,

   3  

where . It is easy to see that  maps  into itself. Now, we will show that  is 
contraction on . 

Consider the following two differences 

, … . , , … . , ,                               4  

for , , , 0  and 
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, … . , 0 , … . , 0   

, , , , , , ,

, , , , , , , , 

                                                                                        for , , 0, .                   5  

From (4) and , we have 

,  , , , 0                                    6  

Moreover by (5), , 

, … . , 0 , … . , 0  

, , , , , , ,

, , , , , , ,  

, , , , , ,            

, , , ,  

, , , ,                     

, ,   

1                                          

    .                                                                  7  
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From the equation (6) and (7) we get 

    , for , ,                                                      (8) 

where . Since, 1 then equation (8) shows that  
is a contraction on . Consequently, the operator  satisfies all the assumptions of the 
Banach contraction mapping theorem. Therefore, in space  there is a unique fixed point 
for  and this point is the mild solution of the considered problem (1) – (2).          � 

4. Continuous dependence of mild solution 
Theorem 4.1: Assume that the assumptions  hold and that the function 

, ,  and  satisfy the hypothesis . Then for each ,  and for the 
corresponding mild solutions ,  of the problems 

′ , , , , , , , ,   0, ,                   9  

, … . , ,        , 0 , 1,2                                     10  

the following inequality 

                          11  

is true. Additionally, if  then, 

1 .                                           12  

Proof: Suppose that  1,2  be an arbitrary functions belonging to  and suppose 
 1,2  be the mild solutions of the problem (9) - (10). Consequently, 

0 0   

, … . , 0 , … . , 0  

, , , , , , ,   

           , , , , , , , ,   ,                      13  

and for  we have 
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                     , … . , , … . , .             14  

By our assumptions, 

  

, , , , , , ,

, , , , , , ,  

 

 
 
 
  

, ,                                           

, , , , , , , ,  

 

 
 
 
  

, ,                                           

, , , ,  

  

, , , ,  

  

           1 , , , for 0 . 

Therefore, 

sup ,   

                                       1 , , ,   0,                      15  

From  and (14) we have 
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       for .                                 (16) 

Since, 1, (15) and (16) imply that  

, ,    

                                      1 , , ,        for .                17  

By Gronwall’s inequality, we have 

.               

and therefore inequality (11) is true. Finally, inequality (12) is a consequence of 
inequality (11). Thus, the proof is complete.      � 
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