
Journal of Physical Sciences, Vol. 17, 2013, 11-31 
ISSN: 0972-8791, www.vidyasagar.ac.in/journal 
Published on 26 December 2013 

11 
 

Probability and Fuzzy Logic in Analogical Reasoning 
M. Gr. Voskoglou 

School of Technological Applications  
Graduate Technological Educational Institute (T.E.I.), 263 34 Patras, Greece  

Received 1 October 2013; accepted 12 November 2013 

ABSTRACT 
Analogical Reasoning (AR) is a method of processing information that compares the 
similarities between new and past understood concepts, then using these similarities to 
gain understanding of the new concept. In this work we develop two mathematical 
models for the description of the process of AR: A stochastic model by introducing a 
finite ergodic Markov chain on the steps of the AR process and a fuzzy model by 
representing the main steps of the AR process as fuzzy subsets of a set of linguistic labels 
characterizing the individuals’ performance in each of these steps. The two models are 
compared to each other by listing their advantages and disadvantages. Classroom 
experiments are also performed to illustrate their use in practice.  

Keywords: Analogical Reasoning, Problem Solving, Markov chains, Fuzzy Sets, 
Defuzzification Techniques 

1. Introduction 
One of the most frequently used strategies (heurristics) in problem-solving (PS) is the 
strategy of the analogous problem: When the solver is not sure of the appropriate 
procedure to solve a given problem (target problem), a good hint would be to look for a 
similar problem solved in the past (source problem) and then try to adapt the solution 
procedure of this problem for use with the target problem. However this strategy can be 
difficult to implement in PS, because it requires the solver to attend to information other 
than the problem to be solved. Thus the solver may come up empty-handed, either 
because he/she has not solved any similar problems in past, or because he/she fails to 
realize the relevance of previous problems. But, even if an analogue is retrieved, the 
solver must know how to use it to determine the solution procedure for the target 
problem.  

Several studies ([2], [3], [4], [10], [18] , etc) have provided detailed models for 
the process of analogical PS (APS), in which factors associated with instances of 
successful transfer – that is, use of already existing knowledge to produce new 
knowledge -  are identified. According to these studies the main steps involved in APS 
include: 
• Representation of the target problem.  
• Search-retrieval of a source problem      
• Mapping of the representations of the target and the source problem. 
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• Adaptation of the solution of the source problem for use with the target problem.  
More specifically, before solvers working on a problem they usually construct a 
representation of it. A good representation must include both the surface and the 
structural (abstract, solution relevant) features of the problem. The former are mainly 
determined by what are the quantities involved in the problem and the latter by how these 
quantities are related to each other. The features included in solvers' representations of 
the target problem are used as retrieval cues for a source problem in memory. When the 
two problems share structural but not surface structures the source is called a remote 
analogue of the target problem. Analogical mapping requires aligning the two situations–
that is, finding the correspondences between the representations of the target and the 
source problem – and projecting inferences from the source to the target. Once the 
common alignment and the candidate inferences have been discovered the analogy is 
evaluated. The last step involves the adaptation of the solution of the analogous problem 
for use with the target problem, where the correspondences between objects and relations 
of the two problems must be used. 

The successful completion of the above process is referred as positive analogical 
transfer (AR). But the search may also yield distractor problems having surface but not 
structural (solution relevant) common features with the target problem and therefore 
being only superficially similar to it. Usually the reason for this is a non satisfactory 
representation of the target problem, containing only its salient surface features, and the 
resulting consequences on the retrieval cues available for the search process. When a 
distractor problem is considered as an analogue of the target, we speak about negative 
analogical transfer. This happens if a distractor problem is retrieved as a source problem 
and the solver fails, through the mapping of the representations of the source and target 
problem, to realize that the source cannot be considered as an analogue to the target. 
Therefore the process of mapping is very important in APS playing the role of a "control 
system" for the fitness of the source problem. 

In this work we develop two mathematical models for the description of the 
process of AR: A stochastic model by introducing a finite ergodic Markov chain on the 
steps of the AR process and a fuzzy model by representing the main steps of the AR 
process as fuzzy subsets of a set of linguistic labels characterizing the individuals’ 
performance in each of these steps. The two models are compared to each other by listing 
their advantages and disadvantages. Classroom experiments are also performed to 
illustrate their use in practice.  

 
2. The stochastic model 
For the development of our stochastic model we assume that the APS process has the 
Markov property. This means that the probability of entering a certain step at a certain 
phase of the process, although it is not necessarily independent of previous phases, it 
depends at most on the step occupied in the previous phase. Our assumption is a 
simplification (not far away from the truth) made to the real system that enables the 
formulation of it to a form ready for mathematical treatment (assumed real system, e.g. 
see [19]; section 1).                                   
We introduce a finite Markov chain on the steps of the APS process described above. The 
states of this chain are: s1= representation, s2=search-retrieval, s3= mapping, 
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s4=adaptation and s5=solution of the target problem. For general facts on Markov chains 
we refer freely to the book [6]. 

The starting state is always s1. When the APS process is completed at s5, it is 
assumed that a new problem is given for solution and therefore the process restarts from 
s1.  After the completion of the target problem’s representation the solvers proceed from 
s1 to s2. Being at s2 and facing difficulties in finding a source problem they may return to 
s1 asking for more information from problem’s representation. Then they proceed again 
to s2 to continue the APS process. 

After the retrieval of a source problem the solvers proceed from s2 to s3. If the 
source is considered to be analogous to the target problem, then they transfer from s3 to 
s4. Otherwise they return to s2 searching for a new source problem. Notice that solvers 
who finally fail to retrieve an analogue through the mapping process cannot proceed 
further. Therefore they return to s1 waiting for a new problem to be given for solution. 

     After the adaptation of the solution of the source for use with the target problem 
the solvers proceed to the final state s5 of the solution of the target problem. On the 
contrary, if during the adaptation process they realize that the source is in fact a distractor 
problem, they return to s2 searching for a new source. Solvers who finally fail to adapt the 
solution of the source for use with the target problem they return from s4 to s1 waiting for 
a new problem to be given for solution. According to the above description the flow-
diagram of the APS process is that shown in Figure 1. 

 
Figure 1. The “flow-diagram” of the process of APS 

 
Denote by pij the transition probability from state si to sj, for i,j=1,2,3,4,5. According to 
the above diagram the transition matrix of the chain is: 
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Obviously we have that p21+p23=p31+p32+p34=p41+p42+p45=1    (1) 
It becomes also evident that in our Markov chain it is possible to go between any to 
states, not necessarily in one step, i.e. it is an ergodic chain. For an ergodic chain it is 
well known that, as the number of its phases tends to infinity (long run), the chain tends 
to an equilibrium situation characterized by the equality P=PA   (2), where P=[p1 p2 p3 p4 
p5] is the limiting probability vector of the chain. The entries of P give the probabilities 
for the chain to be in each of its states in the long run. Obviously we have that p1+ p2+ 
p3+ p4+ p5=1 (3). 
From relation (2) one gets easily the following equations: 
p1=p2p21+p3p31+p4p41+p5 
p2=p1+p3p32+p4p42 
p3= p2p23 
p4=p3p34 
p5=p4p45 
Adding the first four of the above equations and using relation (1) one finds the fifth 
equation, which therefore is equivalent with the others. Solving the linear 5X5 system of 
the first four equations and of equation (3) by the Cramer’s rule (it turns out that this 
system has always a unique solution) one finds that 
p1= 

D
pppppppp 3442234132234131 )1()1)(1( −−+−−   p2=

D
pp )1)(1( 4131 −−  

p3=
D
pp )1( 4123 −− , p4=

D
pp 3423 , p5= D

pppppp 423423413423 )1( −−−
 

where D=(2+p23)(p31-1)(p41-1)+p23(2p32-1)(p41-1)+p23p34(1-2p42) is the determinant of the 
system. 

Further, it is well known that in an ergodic chain the mean number of times in 
state si between two successive occurrences of sj is given by 

j

i

p
p  ([6]; Theorem 6.2.3). 

Therefore, since the process starts again after state s5 (as a new problem is given for 
solution), the mean number of times between two successive occurrences of s5 is given 

by m=∑
=

4

1 5i

i

p
p

=
5

51
p

p−
. The value of m is an indicator    of the solvers’ difficulties 

during the APS process. Another indicator is the time spent for the solution of each 
problem. However, assuming that the time available for the solution of each problem is 
prefixed, it becomes evident that m becomes a measure for solvers’ difficulties during the 
APS process. The bigger is m the more the solvers’ difficulties during the APS process.   
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A classroom experiment: In order to illustrate the use of the above model in practice we 
performed the following experiment, where the subjects were students of the Graduate 
Technological Educational Institute of Patras, Greece, being at their second term of 
studies. We formed two groups, with 20 students of the School of Management and 
Economics in the first and 20 students of the School of Technological Applications 
(prospective engineers) in the second group. 

Three mathematical problems were given for solution to both groups (see 
Appendix) on topics of the students’ first term course of mathematics. In each case and 
before receiving the target problem students received two other problems together with 
their solution procedures. They read each problem and its solution procedure and then 
solved the problem themselves using the given procedure. Subjects were allowed 10 
minutes for each problem and they were not given the other problem until after 10 
minutes had elapsed. The first of these problems was a remote analogue to the target 
problem, while the other was a distractor problem.  Next the target problem was given 
and was asked from the students to try to solve it by adapting the solution of one of the 
previous problems (time allowed 20 minutes). Our instructions stressed the importance of 
showing all of one's work on paper and emphasized that we were interested in both 
correct and incorrect solution attempts.  

Examining students’ papers after the end of the experiment we calculated the 
following means: 
4,2 students from the first group faced difficulties in retrieving a source problem, but they 
came through after looking back to their representations of the target problem (5,1 
students from the second group). 
15,1 students from the first group considered through the mapping the collected source as 
an analogue to the target problem, while the rest of them (4,9 students) searched for a 
new source. Finally 3,7 from the 4,9 students considered the new source as an analogue 
to the target problem, while the rest of them (1,2 students) failed to retrieve an analogue 
through the mapping process (14,8 and 1,6 students from the second group respectively). 
Thus 15,1+3,7=18,8 students from the first group proceeded finally to the step of 
adaptation (14,8+1,6=16,4 students from the second group). From these students 11,1 
adapted successfully the solution of the analogue for use with the target problem, while 
1,5 students (who had previously considered both the remote analogue and the distractor 
as source problems) failed to do so.(12,1 and 1,5 students from the second group 
respectively). The rest (6,2 students from the first and 2,8 from the second group) 
returned to s2 to retrieve a new source and through s3 they came back to s4. 
Finally 3,3 from these 6, 2 students of the first group adapted successfully the solution of 
the analogue for use with the target problem and 2,9 failed to do so (1,6 and 1,2 students 
from the second group respectively). Thus 11,1+3,3=14,4 students from the first and 
12,1+1,6=13,7 students from the second group solved finally the target problems. 
The “movements” of the students of the first group are shown in Figure 2. We observe 
that we have 35,3 in total “arrivals” to s2 and 31,1 “departures” from s2 to s3, therefore 
p23=

3,35
1,31 ≈0,881. In the same way one finds that p21=

3,35
9,4 ≈0,119,   p31=

1,31
2,1 ≈0,038 
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p32=
1,31
9,4 ≈0,158,  p34=

1,31
25 ≈0,804 , p41=

25
4,4 ≈0,176 , p42=

25
2,6 ≈0,248 and 

p45=
25

4,14 ≈0,576. 

Replacing the values of the transition probabilities in the formulae of the model we find 
that the limiting probability vector for the first group is   
P≈ [0,157  0,259  0,231  0,232  0,121] and that m≈7,264 times. 
Operating the analogous calculations for the second group we find that 
P≈ [0,154  0,26  0,237  0,23  0,119] and m≈7,404 times.  
 

 
Figure 2.  The “movements” of the students of the first group 

 
The elements of P give the several probabilities about the “behavior” of each group 
during the AR process. Also, since 7,264<7,404, the performance of the first group was 
slightly better. 

According to the design of our experiment students had to choose the source 
problem between two given problems: A remote analogue to the target and a distractor 
problem. However, often things are not so simple. In fact, the individuals have usually to 
search in their memories to retrieve the source among several past problems sharing 
common surface and/or structural characteristics with the target. We could of course add 
in our experiment one or more problems among the candidate source problems. 
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Nevertheless, this manipulation would make the calculation of the transition probabilities 
between states of the chain more complicated, because the students’ movements would 
be extended to several directions.  

3. The fuzzy model 
Human reasoning in general is characterized by a degree of uncertainty. In fact, the 
individual’s cognition utilizes concepts that are inherently graded and therefore fuzzy. On 
the other hand, from the observer’s point of view (e.g. teacher) there usually exists 
vagueness about the degree of the individual’s success in each of the steps of the 
reasoning process.  

Fuzzy logic, based on fuzzy sets theory introduced in 1965 by Zadeh (18) 
provides a rich and meaningful addition to standard logic in general and to probability 
theory in particular. The applications which may be generated from or adapted to fuzzy 
logic are wide-ranging (e.g. see [9], [11], [12], [20], etc) and provide the opportunity for 
modelling under conditions which are inherently imprecisely defined, despite the 
concerns of classical logicians. Some important applications of fuzzy logic were also 
attempted in the field of Education (e.g. see [1], [5], [13], [14], [15], [17], [20], [21], etc). 
All these gave us the impulsion to introduce principles of fuzzy logic to describe in a 
more effective way the process of AR.  For general facts on fuzzy sets we refer freely to 
the book [7]. 

Let us consider a group of n analogical problem solvers, n≥2. Denote by Ai , 
i=1,2,3 the steps of search-retrieval, mapping and adaptation respectively. Denote also by 
a, b, c, d, and e the linguistic labels of negligible, low, intermediate, high and complete 
success respectively of the analogical problem solvers in each of the Ai’s.  
Set U = {a, b, c, d, e} and let nia, nib, nic, nid and nie denote the numbers of analogical  
problem solvers who faced negligible, low, intermediate,  high and complete success at 
step Ai , i=1,2, 3.  We define the membership function mAi for each x in U, as follows:  
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Then Ai is represented as a fuzzy subset of U by  

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 



 M. Gr. Voskoglou  

 
 

18

In order to represent all possible solvers’ profiles (overall states) during the AR process 
we consider a fuzzy relation, say R, in U3 (i.e. a fuzzy subset of U3) of the form R= {(s, 
mR(s)): s=(x, y, z) ∈U3}. 

Since the degree of solvers’ success at a certain step depends upon the degree of 
their success in the previous step and in order to determine properly the membership 
function mR we give the following definition: 
A profile  s=(x, y, z), with x, y, z in U, is said to be well ordered if x corresponds to a 
degree of success equal or greater than y, and y corresponds to a degree of success equal 
or greater than z. For example, (c, c, a) is a well ordered profile, while (b, a, c) is not.  

We define now the membership degree of a profile s to be 
mR(s)=m

1A (x)m
2A (y)m

3A (z),   if s is well ordered, and 0 otherwise.  
In fact, if for example profile (b, a, c) possessed a nonzero membership degree, how it 
could be possible for a solver, who failed at the step of mapping, to perform satisfactorily 
at the step of adaptation?  

Next, for reasons of brevity, we shall write ms instead of mR(s). Then the 

possibility rs of the profile s is defined by rs= }max{ s

s

m
m

, where max {ms} denotes the 

maximal value of ms , for all s in U3. In other words the possibility of s expresses the 
“relative membership degree” of s with respect to max {ms}. Calculating the possibilities 
of all profiles one obtains a qualitative view of the group’s performance during the AR 
process. 

Further, the amount of information obtained by an action can be measured by the 
reduction of uncertainty resulting from this action.  Accordingly the individuals’ 
uncertainty during the AR process is connected to their capacity in obtaining relevant 
information. Therefore a measure of uncertainty could be adopted as a measure of the 
group’s abilities in AR. For example, such a measure that we have used in an earlier 
paper, when developing an analogous fuzzy model for the problem solving process [21] 
is the total possibilistic uncertainty T of the group.  

Here we shall use a classical measure of uncertainty and the associated 
information (known as the Shannon’s entropy or the Shannon- Wiener diversity 
index).expressed in terms of the Dempster-Shafer mathematical theory of evidence, for 
use in a fuzzy environment in the form  

H= - ∑
=

n

s
ss mm

n 1
ln

ln
1

, where n is the total number of elements of the corresponding 

fuzzy set ([8]; p.20). In the above formula the sum is divided by ln n in order to 
normalize H, so that its maximal value is 1 regardless the value of n.  

Adopting H as a measure of the group’s abilities in AR it becomes evident that 
the lower is the value of H (i.e. the higher is the reduction of the corresponding 
uncertainty), the better the group’s abilities. An advantage of adopting H as a measure 
instead of T is that H is calculated directly from the membership degrees of all profiles s, 
in contrast to T that presupposes the calculation of the possibilities of all profiles first. 
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Assume now that one wants to study the combined results of behaviour of k 
different groups, k≥2, during the same process. For this we introduce the fuzzy variables 
A1 (t), A2 (t) and A3 (t) with t=1, 2,…, k. The values of these variables represent fuzzy 
subsets of U corresponding to the steps of the AR process for each of the k groups; e.g. 
A1 (2) represents the fuzzy subset of U corresponding to the step of search-retrieval for 
the second group (t=2). It becomes evident that, in order to measure the degree of 
evidence of combined results of the k groups, it is necessary to define the possibility r(s) 
of each profile s with respect to its membership degrees for all groups. For this, we 

introduce the pseudo-frequencies f(s) =∑
=

k

t
s tm

1
)(  and we define r(s) =

)}(max{
)(
sf

sf
, 

where max {f(s)} denotes the maximal pseudo-frequency. Obviously the same method 
could be applied when one wants to study the combined results of behaviour of a group 
during different analogical problem solving processes.  

Application: A similar classroom experiment with it described in section 2 was repeated 
a few days later with two different groups of 20 students of the Technological 
Educational Institute of Patras being at their second term of studies. The difference was 
that this time we added one more problem among the candidate source problems in each 
of the three cases, which was unrelated to the target problem in terms of both their 
surface and structure features (see Appendix). For the unrelated problem we followed the 
same process with the other problems, i.e. we gave a solution procedure to students and 
we allowed 10 minutes to solve it themselves by using the given procedure. 
We also added one more case (see Appendix), i.e. we had 4 cases in total. Our 
characterization of students’ performance at each step of the AR process involved: 

• Negligible success, if they didn’t obtain (at the particular step) positive results for 
the given problems. 

• Low success, if they obtained positive results for 1 only of the given problems. 
• Intermediate success, if they obtained positive results for 2 problems. 
• High success, if they obtained positive results for 3 problems. 
• Complete success, if they obtained positive results for all the given (4 in total) 

problems. 
Examining students’ papers of the first group we found that 9, 6 and 5 students achieved 
intermediate, high and complete success respectively at the step of search-retrieval in 
terms of choosing the correct problem (i.e. the remote analogue to the target) as the 
source problem. This means that n1a=n1b=0, n1c=9, n1d=6 and n1e=5. Thus, according to 
the definition of )(xm

iA , the step of search-retrieval corresponds to a fuzzy subset  of U 

of the form:   

A1 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e, 0.25)}.  

In the same way we represented the steps of mapping and adaptation as fuzzy subsets of 
U by  
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A2 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0)} and  

A3 = {(a, 0.25),(b, 0.25),(c, 0.25),(d,0),(e,0)} respectively. 

Next, we calculated the membership degrees of the 53 (ordered samples with replacement 
of 3 objects taken from 5) in total possible students’ profiles (see column of ms(1) in 
Table 1). For example, for s=(c, c, a) one finds that ms = m

1A (c). m
2A (c). m

3A (a) 
=(0.5).(0.5).(0.25)=0.06225. 

It turned out that (c, c, a) was one of the profiles possessing the maximal 
membership degree and therefore the possibility of each s in U3 is given by rs=

06225,0
sm . 

Using this formula we calculated the possibilities of all profiles (see column of rs(1) in 
Table 1).  

Finally we calculated the Shannon’s entropy in terms of the values of column 
ms(1) in Table 1, where  n=125 and we found that H=0,289.  
Working as above for the second group we found that  

A1={(a,0),(b, 0.25),(c, 0.5),(d, 0.25),(e,0)},  

A2={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e,0)},    

A3={(a, 0.25),(b, 0.25),(c,0.25),(d,0),(e,0)}. 

The membership degrees of all possible profiles of the second group are shown 
in column of ms (2) of Table 1. It turned out that the maximal membership degree was 
again 0.06225, therefore the possibility of each s is calculated by the same formula as for 
the first group. The possibilities of all profiles are shown in column of rs(2) of Table 1, 
while for the Shannon’s entropy we found that H=0,312. Thus, since 0,289<0,312, the 
general performance of the first group was slightly better. 

Next, in order to study the combined results of behaviour of the two groups, we 
introduced the fuzzy variables Ai (t), i=1, 2, 3 and t=1, 2, as we have described them in 
the model. Then the pseudo-frequency of each student profile s is given by f(s) = ms (1) + 
ms (2) (see the corresponding column in Table 1). It turns out that the highest pseudo-
frequency is 0,124 and therefore the possibility of each student’s profile is given by 

124,0
)()( sfsr = . The possibilities of all profiles having non-zero pseudo-frequencies are 

presented in the last column of Table 1. 

A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s)
B b b 0 0 0.016 0.258 0.016 0.129
B b a 0 0 0.016 0.258 0.016 0.129
B a a 0 0 0.016 0.258 0.016 0.129
C c c 0.062 1 0.062 1 0.124 1
C c a 0.062 1 0.062 1 0.124 1
C c b 0 0 0.031 0.5 0.031 0.25
C a a 0 0 0.031 0.5 0.031 0.25
C b a 0 0 0.031 0.5 0.031 0.25
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C b b 0 0 0.031 0.5 0.031 0.25
D d a 0.016 0.258 0 0 0.016 0.129
D d b 0.016 0.258 0 0 0.016 0.129
D d c 0.016 0.258 0 0 0.016 0.129
D a a 0 0 0.016 0.258 0.016 0.129
D b a 0 0 0.016 0.258 0.016 0.129
D b b 0 0 0.016 0.258 0.016 0.129
D c a 0.031 0.5 0.031 0.5 0.062 0.5
D c b 0.031 0.5 0.031 0.5 0.062 0.5
D c c 0.031 0.5 0.031 0.5 0.062 0.5
E c a 0.031 0.5 0 0 0.031 0.25
E c b 0.031 0.5 0 0 0.031 0.25
E c c 0.031 0.5 0 0 0.031 0.25
E d a 0.016 0.258 0 0 0.016 0.129
E d b 0.016 0.258 0 0 0.016 0.129
E D c 0.016 0.258 0 0 0.016 0.129

 
Table 1.  Profiles with non zero membership degrees 

 
4. The centroid defuzzification technique 
Defuzzification is the process of producing a quantifiable result in fuzzy logic given fuzzy 
sets and corresponding membership degrees. A common and useful defuzzification 
technique is the method of the centre of gravity, usually referred as the centroid method 
(e.g. see [16]). According to this method, given a fuzzy subset A = {(x, m(x)): x∈U} of 
the universal set U of the discourse with membership function m: U →[0, 1], we 
correspond to each x∈U an interval of values from a prefixed numerical distribution, 
which actually means that we replace U with a set of real intervals. Then, we construct 
the graph F of the membership function y=m(x).There is a commonly used in fuzzy logic 
approach to measure performance with the pair of numbers (xc, yc) as the coordinates of 
the centre of gravity, say Fc, of the graph F, which we can calculate using the following 
well-known from mechanics formulas:  

,F F
c c

F F

xdxdy ydxdy
x y

dxdy dxdy
= =
∫∫ ∫∫

∫∫ ∫∫
                                                                        (1) 

Subbotin et al. adapted the centroid method for use with our fuzzy model for the process 
of learning [17] and they have applied it on comparing students’ mathematical learning 
abilities [13] and in other cases (e.g. see [14],  [15], etc).  

In this paper we shall apply this method as a defuzzification technique of the 
fuzzy outputs of our model for AR developed in the previous section. For this, we 
characterize a student’s performance as very low if x ∈  [0, 1), as low if x ∈  [1, 2), as 
intermediate if x∈  [2, 3), as high if x ∈  [3, 4) and as very high if x ∈  [4, 5]. This 
characterization is obtained through the evaluation of the students’ papers. Consequently 
if x ∈  [0, 1) then y=m(x)=m(a), if  x ∈  [1, 2) then y=m(x)=b, etc.  

Now the graph F of the corresponding fuzzy subset of  U takes the form of the bar 
graph of Figure 3 consisting of 5 rectangles, say Fi, i=1,2,3,4,5, having the lengths of 
their sides on the x axis equal to 1.  
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Figure 3.  Bar graphical data representation 
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∑ . Therefore formulas (1) are transformed into the 

following form: 

1 2 3 4 5
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⎛ ⎞+ + + +
= ⎜ ⎟+ + + +⎝ ⎠

⎛ ⎞+ + + +
= ⎜ ⎟

+ + + +⎝ ⎠  
Normalizing our fuzzy data by dividing each m(x), x∈U, with the sum of all membership 
degrees we can assume without loss of the generality that y1+y2+y3+y4+y5 = 1. Therefore 
we can write: 

( )

( )
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 3 5 7 9 ,
2
1
2

c

c

x y y y y y

y y y y y y

= + + + +

= + + + +
(2) 

with  yi = 
∑
∈Ux

i

xm
xm

)(
)(

, where x 1 = a, x2 =b, x3= c, x4 = d and x5 = e. 

But 0≤ (y1-y2)2=y1
2+y2

2-2y1y2, therefore y1
2+y2

2 ≥2y1y2, with the equality holding if, and 
only if, y1=y2. In the same way one finds that y1

2+y3
2 ≥2y1y3, and so on. Hence it is easy 
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to check that  (y1+y2+y3+y4+y5)2 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2), with the equality holding if, 

and only if y1=y2=y3=y4=y5. But y1+y2+y3+y4+y5 =1,  therefore 1 ≤  
5(y1

2+y2
2+y3

2+y4
2+y5

2)  (3), with the equality holding if, and only if  y1=y2=y3=y4=y5=
5
1  

. In this case the first of formulas (2) gives that xc= 
2
5 .  Further, combining the inequality 

(3) with the second of formulas (2) one finds that 1≤10yc, or yc ≥  
10
1

  
Therefore the 

unique minimum for yc corresponds to the centre of gravity Fm (
2
5 ,

10
1 ). 

The ideal case is when y1=y2=y3=y4=0 and y5=1. Then from formulas (2) we get 
that xc = 

2
9  and yc = 

2
1 .Therefore the centre of gravity in the ideal case is the point Fi (

2
9 , 

2
1 ). On the other hand the worst case is when y1=1 and y2=y3=y4= y5=0. Then for 

formulas (2) we find that the centre of gravity is the point Fw (
2
1 , 

2
1 ). Thus, the “area” 

where the centre of gravity Fc   lies is represented by the triangle Fw Fm Fi of Figure 4. 
Then from elementary geometric considerations it follows that for two groups of students 
with the same xc ≥2,5 the group having the centre of gravity which is situated closer to Fi   
is the group with the higher yc; and for two groups with the same xc <2.5 the group 
having the centre of gravity which is situated farther to Fw is the group with the lower yc. 
Based on the above considerations we formulate our criterion for comparing the groups’ 
performances as follows: 

• Among two or more groups the group with the biggest xc   performs better. 
• If two or more groups have the same xc ≥ 2.5, then the group with the higher yc  

performs better. 
• If two or more groups have the same xc < 2.5, then the group with the lower yc   

performs better. 
 

       
Figure 4. Graphical representation of the “area” of the centre of gravity 

 
Next we give an example illustrating our results in practice. 
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Example: Let us reconsider the example with the two groups of students of the Graduate 
Technological Educational Institute of Patras presented in section 3. The fuzzy data 
obtained was the following:  
First group    
A11 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0.25)},  A12 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0)}, 

A13 = {(a, 0.25),(b, 0.25),(c, 0.25),(d,0),(e,0)}. 

Second group  
A21 = {(a, 0),(b, 0.25),(c, 0.5),(d, 0.25),(e, 0)}, A22={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 
0)}, 

A23={(a, 0.25),(b, 0.25),(c, 0.25),(d, 0),(e, 0)}. 

According to the above notation the first index of Aij denotes the group (i=1, 2) and the 
second index denotes the corresponding step Aj of the AR process. We recall that the 
steps of the AR process as they have been considered in our model developed in [8] are 
A1: search-retrieval, A2: mapping and A3: adaptation respectively. 
We compare now the two groups’ performance with the centroid method.  Applying the 
first of formulas (2) for the first step of search-retrieval we find  

xc11 = 
2
1 (5 x 0.5 + 7 x 0.25 + 9 x 0.25) = 3.25, xc21 = 

2
1 (3 x 0.25 + 5 x 0.5 + 7 x 0.25) = 

2.25 
Thus, by our criterion the first group demonstrates better performance. 
For the second step of mapping normalizing the membership degrees of A12 (0.5 : 0,.75 
≈  0.67 and 0.25 : 0.75 ≈  0.33) we get   

A12 = {(a, 0),(b, 0),(c, 0.67),(d, 0.33),(e, 0)}.  

Therefore we have xc12 = 
2
1 (5 x 0.67 + 7 x 0.33) = 2.83, xc22 = 

2
1 (0.25 + 3 x 0.25 + 5 x 

0.25) = 1.125  
By our criterion, the first group again demonstrates better performance. 

Finally, for the third step of adaptation we have A13= A23 = {(a, 0.25),(b, 0.25),(c, 
0.25),(d, 0),(e, 0)}, which obviously means that in this case the performances of both 
groups are identical.  

Based on our calculations we can conclude that the first group demonstrated 
better performance at the first two steps of the AR process, while at the third step the 
performances of both groups were identical.  

Among the advantages of the centroid method is that no complicated calculations 
are needed in its final step (application of the formulas obtained). Further it enables one 
to compare the performances of the student groups’ at each stage of the AR process.  
Apart from the centroid method there are also other defuzzifcation techniques in use. For 
example, in section 3 we have used he total student group’s uncertainty during the AR 
process as a measure of its performance. The above two assessment approaches treat 
differently the idea of the students’ performance and therefore the results obtained may 
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differ to each other. In fact, in the first case the student group’s uncertainty during the AR 
process is connected to its capacity in obtaining the relevant information. In other words, 
in this case we are looking for the average group’s performance. On the other hand, in 
the case of the centroid technique the weighted average plays the main role, i.e. the 
results  of the performance close to the ideal performance have much more weight than 
those close to the lower end.  In other words, in this case we are mostly looking at the 
quality of the performance. It is argued that the combined application of these two 
approaches helps in finding the ideal profile of performance according to the user’s 
personal criteria of goals and therefore to finally choosing the appropriate approach for 
measuring the results of his/her experiments. 

5. Students’ individual assessment 
The outputs of our fuzzy model for AR can be used not only for assessing the 
performance of student groups’, but also for the students’ individual assessment. In fact, 
if n=1 (we recall that n denotes the number of students’ of the group under study), then 
from the definition of the membership function 

iAm given in section 3 it becomes evident 
that in each Ai, i = 1, 2, 3, there exists a unique element x of U with membership degree 1, 
while all the others have membership degree 0. In this case it is straightforward to 
compare to each other the student’s performance at each step of the AR process. For 
example, if A11= {(a, 0), (b, 0), (c,0), (d,1), (e,0)} and 
A21= {(a, 0), (b, 0), (c,1), (d,0), (e,0)}, then obviously the first student demonstrates a 
better performance than the second one at the step of search/retrieval. This is trivially 

crossed by the centroid method, since xc 11= 7
2

 and xc 21= 5
2

. 

As a consequence of the above situation (n=1), there exists a unique student profile s 
with ms= 1, while all the others have membership degree 0.  In other words, each student 
is characterized in this case by a unique profile, which gives us the requested information 
about his/her total performance. For example, if (c, b, a) and (c, b, b) are the 
characteristic profiles for students x and y respectively, then clearly y demonstrates a 
better performance than x. On the contrary, if (d, b, b) and (c, c, b) are the corresponding 
profiles, then x demonstrates a better performance than y at the step of search/retrieval, 
but y demonstrates a better performance than x at the step of  mapping. Mathematically 
speaking this means that the students’ characteristic profiles define a relationship of 
partial order among students’ with respect to their performance.   

Jones  developed a fuzzy model to the field of Education involving several 
theoretical constructs related to    assessment, amongst which is a technique for assessing 
the deviation of a student’s knowledge with respect to the teacher’s knowledge , which is 
taken as a reference ([1] and [5]). Here we shall present this technique, properly adapted 
with respect to our fuzzy model, as an alternative fuzzy method for the students’ 
individual assessment.  

Let X= {A1, A2, A3} be the set of the steps of the AR process mentioned in the 
example of section 2. Then a fuzzy subset of X of the form {(A1, m(A1)), (A2, m(A2)), (A3, 
m(A3)}can be assigned to each student , where the membership function m takes the 
values 0, 0.25, 0.5, 0.75, 1 according to the level of the student’s performance at the 
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corresponding step. The teacher’s fuzzy measurement is always equal to 1, which means 
that the fuzzy subset of X corresponding to the teacher is  
{(A1, 1), (A2, 1), (A3, 1)}.  

Then the fuzzy deviation of the student i with respect to the teacher is defined to 
be the fuzzy subset  
Di={(A1,1-m(A1)), (A2, 1-m(A2)), (A3,1- m(A3)} of X.  
This assessment by reference to the teacher provides us with the ideal student as the one 
with nil deviation in all his/her components and it defines a relationship of partial order 
among students’.  The following example illustrates this theoretical framework in 
practice.    

Example: The same experiment with it described in section 3 was repeated with another 
group of 35 students of the Technological Educational Institute of Patras, Greece.  This 
time in assessing the students’ individual performance by applying the A. Jones 
technique we found the following types of deviations with respect to the teacher: 

D1 = {(A1, 0.75), (A2, 0.75), (A3, 1)} (this type of deviation was related with 2 students) 
D2 = {(A1, 0.5), (A2, 1), (A3, 1)} (related with 7 students) 
D3 = {(A1, 0.5), (A2, 0.75), (A3, 1)} (related with 5 students) 
D4 = {(A1, 0.5), (A2, 0.75), (A3, 0.75)} (related with 4 students) 
D5 = {(A1, 0.25), (A2, 0.5), (A3, 0.75)} (related with 3 students) 
D6 = {(A1, 0.25), (A2, 0.25), (A3, 0.5)} (related with 6 students) 
D7 = {(A1, 0), (A2, 0.5), (A3, 0.75)} (related with 1 student) 
D8 = {(A1, 0), (A2, 0.5), (A3, 0.5)} (related with 2 students) 
D9 = {(A1, 0), (A2, 0.25), (A3, 0.5)} (related with 1 student) 
D10 = {(A1, 0), (A2, 0.25), (A3, 025)} (related with 3 students) 
D11 = {(A1, 0), (A2, 0), (A3, 0.25)} (related with 1 student) 

On comparing the above types of students’ deviations it becomes evident that the 
students possessing the type D3 of deviation demonstrate a better performance than those 
possessing the type D1, the students possessing the type D4 demonstrate a better 
performance than those possessing the type D3 and so on. However, the students 
possessing the type D1 demonstrate a better performance at the step of mapping than 
those possessing the type D2, who demonstrate a better performance at the step of 
search/retrieval. Similarly, the students possessing the type D6 demonstrate a better 
performance at the steps of mapping and adaptation than those possessing the type D7, 
who demonstrate a better performance at the step of search/retrieval.   

Notice that each deviation Di corresponds to a student’s profile si, i = 1, 2,….. , 
11. For example, the deviation D1 corresponds to the student {(A1, 0.25), (A2, 0.25), (A3, 
0)}, whose profile is s1 = (b, b, a). Applying the same argument one finally finds the 
following profiles characterizing the students’ performance in our experiment: 

s1 = (b, b, a)   (this profile is related with 2 students) 
s2 = (c, a, a)   (related with 7 students) 
s3 = (c, b, a)   (related with 5 students) 
s4 = (c, b, b)   (related with 4 students) 
s5 = (d, c, b)   (related with 3 students) 
s6 = (d, d, c)   (related with 6 students) 
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s7 = (e, c, b)   (related with 1 student) 
s8 = (e, c, c)   (related with 2 students) 
s9 = (e, d, c)   (related with 1 student) 
s10 = (e, d, d)   (related with 3 students) 
s11 = (e, e, d)   (related with 1 student) 

In other words, the A. Jones technique is actually equivalent to our method for the 
students’ individual assessment. The only difference is that the former expresses the 
fuzzy data with numerical values, while the latter expresses it qualitatively in terms of the 
fuzzy linguistic labels of U. 

Notice also that the teacher may put a target for his/her class and may establish 
didactic strategies in order to achieve it. For example he/she may ask for the deviation, 
say D, with respect to the teacher to be 0.25 0.5D≤ ≤ , for all students and in all steps.  In 
this case the application of the A. Jones technique could help the teacher to determine the 
divergences with respect to this target and hence to readapt his/her didactic plans in order 
to diminish these divergences.   
 
6. Conclusions and discussion 
In this paper we developed two mathematical models for the description of the process of 
AR: A stochastic model by introducing a finite ergodic Markov chain on the steps of the 
AR process and a fuzzy model by representing the main steps of the AR process as fuzzy 
subsets of a set of linguistic labels characterizing the individuals’ performance in each of 
these steps. The Shannon’s entropy (system’s uncertainty) and the centroid method were 
used as deffuzzification techniques in the latter case.   

Both models give important quantitative information about the abilities of a 
group of analogical problem solvers’. In the stochastic model the calculation of the 
transition probabilities between states of the chain is getting more complicated when the 
source must be chosen among more than two given problems, because the individuals’ 
“movements” in this case are extended to more directions. On the contrary, there is not 
any particular difficulty in this case with the fuzzy model.  Moreover the fuzzy model 
gives a qualitative view of the group’s performance through the calculation of the 
possibilities of all individuals’ profiles during the AR process and it can be also 
implemented for the students’ individual assessment. Finally, an additional advantage of 
the fuzzy model is that it gives to the researcher the opportunity to study the combined 
results of the behaviour of two or more groups during the AR process or alternatively to 
study the combined results of the behaviour of the same group during different analogical 
problem solving processes.  

On the other hand the characterization of the analogical problem solvers’ 
performance in terms of a set of linguistic labels which are fuzzy by themselves is a 
disadvantage of the fuzzy model, because this characterization depends on the 
researcher’s personal criteria (see for example in section 3 the criteria used in our 
experiments for characterizing the students’ performance). Therefore the combined use of 
the two models seems to be the best solution in achieving a worthy of credit 
mathematical analysis of the AR process. 

 
APPENDIX: Problems given for solution in the classroom experiments 
CASE 1  
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Target problem:  A box contains 8 balls numbered from 1 to 8. One makes three 
successive drawings, putting back the corresponding ball to the box before the next 
drawing. Find the probability of getting all the balls drawing out of the box different to 
each other. -   
The probability is equal to the quotient of the total number of the ordered samples of 3 
objects from 8 (favourable outcomes) to the total number of the corresponding samples 
with replacement (possible outcomes). 
Remote analogue:  How many numbers of 2 digits can be formed by using the digits 
from 1 to 6 and how many of them have their digits different? 
Solution procedure given to the students: Find the total number of the ordered samples of 
2 objects from 6 with and without replacement respectively. 
Distractor problem:  A box contains 3 white, 4 blue and 6 black balls. If we draw out 2 
balls, what is the probability to be of the same colour? 
Solution procedure given to the students: The number of all favourable outcomes is equal 
to the sum of the total number of combinations of 3, 4 and 6 objects taken 2 at each time 
respectively, while the number of all possible outcomes is equal to the total number of 
combinations of 13 objects taken 2 at each time.   
Unrelated problem (Used only with the fuzzy model): Find the number of all possible 
anagrammatisms of the word “SIMPLE”. How many of them start with S and how many 
of them start with S and end with E? 
Solution procedure given to the students: The number of all possible anagrammatisms is 
equal to the total number 6! of permutations of 6 objects. The anagrammatisms starting 
with S are 5! And the anagrammatisms starting with S and ending with E are 4! 

CASE 2 
Target problem:  Consider the matrices: 

Α =  
1
0 1
0 0 1

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

á á
á    και      Β =  

0
0 0
0 0 0

− −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

á á
á  .     

Prove that An = Α + (n-1)(Β + 
2
n
Β) , for every positive integer  n. -  

Since Α=Ι+Β, where I stands for the unitary 3Χ3 matrix, and B3 =0, is Αn=(Ι+Β)n=Ι+nΒ+ 

+
2

)1( −nn
Β2 ==Α+(n -1)Β+

2
)1( −nn
Β = Α+(n-1)(Β+

2
n
Β)  . 

Remote analogue: Let α be a nonzero real number. Prove that αn = n
n

i
a

i
n

)1(
0

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

, for 

all positive integers n. 
Solution procedure given to the students: Write α = 1+(α-1) and apply the Newton’s 

formula (x+b)n =  iin
n

i
bx

i
n −

=
∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

0
, setting  x=1 and b=α-1. 

Distractor problem:  If A and B are as in the target problem, calculate (A+B)2. - 
The students were asked to operate the corresponding calculations. 
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Unrelated problem (Used only with the fuzzy model):  Prove that 1+2+…+n=
2

)1( +nn
, 

for all positive integers n.- 
The students were asked to apply induction on n. 

 
CASE 3 
Target problem:  The price of sale of a good depends upon its total demand Q and it is 
given by P(Q) = 1

2 Q-50, while the cost of  production of  the good is given by  C(Q)= 
1
4 Q2 +35Q+25. Find the quantity Q of the good’s total demand maximizing the profit 

from sale.-  
The revenue from  sale is equal to P(Q)Q  and therefore the profit from sale  is given  by 
K(Q) = P(Q)Q-C(Q). The maximum of function K(Q) is calculated by using the well 
known theorem of derivatives. 
Remote analogue:  A car is entering in a  road having initial speed 50 Km/h, which is 
changed according to the relation U(t)=3t2-12t+50, where t  represents  the  time  (in 
minutes)  during which the car is moving on this road. Find the minimal speed of  the  car 
on this road.- 
The students were asked to apply the well known theorem of derivatives in order to 
calculate the minimum of the function U(t). 
Distractor problem:  The price of sale of a good depends upon its total demand Q and it 
is given by P(Q)=25-Q2. The price is finally fixed to 9 monetary units and therefore the 
consumers who would be willing to pay more than this price benefit.  Find the total 
benefit to consumers (Dowling 1980, paragraph 17.7:  Consumer’s surplus). 
Solution procedure given to the students: For P=9 and since Q ≥ 0 , it turns out  that  
Q=4.metric units. Drawing the graph of the function P(Q) (parabola) it is easy to observe 

that the total benefit to consumers is equal  to  P Q dQ( )
0

4

∫  -  4.9  monetary units 

Unrelated problem (Used only with the fuzzy model): Find the area under the curve 
y=4x2+2. 

Solution procedure given to the students: The area is given by ∫ + dxx )24( 2 . 

CASE 4 (Used only with the fuzzy model) 
Target problem:  A producer has a stock of wine greater than 500 and less than 750 
kilos. He has estimated that, if he had the double quantity of wine and transfused it to 
bottles of 12, or 25, or 40 kilos, it would be left over 6 kilos at each time. Find the 
quantity of the stock.- 
If Q is the quantity of stock, then, since the lowest common multiple of 12,25 and 40 is 
600,  2Q-6 is a multiple of 600, therefore 2Q=606, or 2Q=1212, or 2Q=1818, etc. But 
500<Q<750, therefore Q=603 kilos. 
Remote analogue:  An employer occupies less than 50 workers. If he occupied the triple 
number of workers and 3 more, then he could distribute them in bands of 8 or 12 or 15 
workers. How many workers he occupies? 
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Solution procedure given to the students: If x is the number of workers, then , since  the  
lowest common multiple of 8, 12 and 15 is 120, 3x+3 is a multiple of 120, or x+1 is a 
multiple of 40. 
Distractor problem:  A producer has a stock of 3400 and 5025 kilos respectively of two 
different kinds of wine and he decides to distribute these quantities to the maximal 
possible number of customers. After this distribution, they remained 25 kilos from each 
kind of wine in his barrels. How many of his customers he succeeded to satisfy with this 
manipulation? 
Solution procedure given to the students: The number of customers is equal to the 
greatest common divisor of 3400-25 and 5025-25. 
Unrelated problem:  The number of students of a school is between 300 and 400. When 
they tried marching in rows of 10 the last row had 9 students, while when they tried 
marching in rows of 9 the last row had 7 students. How many are the students?  
Solution procedure given to the students: Let a=100x+10y+z be the number of students of 
the school. Then a=10t-1 for some positive integer t. Therefore z=9 and x=3. Further 
a=9s+7 for some positive integer s, or a-7=9s. But, since 9 divides a-7, 9 divides also the 
sum of the digits of a-7, i.e. (3+y+9)-7=9k for some positive integer k, or y+5=9k. But 
0<y≤9, therefore y=4.   
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