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ABSTRACT 
There is a lot of fuzziness in resonance problem. Translating the fuzzy membership 
function into probability density function by using the normalized method, the fuzzy 
reliability model of blade to avoid resonance was established. Two methods were 
proposed to solve the model, which were called direct sampling method and typical 
distribution sampling method respectively, and the calculation formulas of their 
corresponding coefficients of variation were given. Some examples were carried out to 
compare the two methods and study the influence of fuzzy degrees on reliability. 
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1. Introduction 
There are always a lot of fuzzy uncertainties in engineering. Therefore, the fuzzy theory 
was introduced into reliability engineering, and the fuzzy reliability theory was founded 
and developed gradually [1-4]. The resonance reliability assessment is a typical fuzzy 
problem. Resonance failure occurs when the excitation frequency equals or closes to the 
inherent frequency. However, "close" is a fuzzy concept. In practice, it is difficult to 
describe the concept "close" by using a definite zone. So the resonance zone has no clear 
boundary and is fuzzy. In other words, whether the resonance failure occurs is a fuzzy 
event. Meanwhile, for some components, such as aero-engine blade (especially with 
damping structure), apart from the fuzziness of resonance zone, its inherent frequency 
also has a lot of fuzziness due to the multiple influences of the various known and 
unknown factors such as machining accuracy, installation tightness, damping factors and 
so on. Some researchers have studied the fuzzy reliability to avoid resonance [5-8]. 
However, as mentioned in the literature [5], the studies just considered the fuzziness of 
resonance zone but ignored the fuzziness of basic variables. 

The fuzzy reliability model of blade to avoid resonance, which considered the 
fuzziness of both resonance zone and inherent frequency, was presented in this paper. The 
expression and measurement of the fuzziness were discussed in section 2. Translating the 
fuzzy membership function into probability density function by using the normalized 
method, the reliability model was proposed in section 3, and its numerical methods, 
which were called Direct Sampling Method and Typical Distribution Sampling Method 
respectively, were given to solve the model. In section 4, the coefficients of variation of 
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numerical solutions were calculated. In section 5, simulations were carried out in order to: 
(i) explain how one can utilize the model and its numerical methods, (ii) compare the two 
numerical solution methods and (iii) study the influence of fuzzy degree on reliability 
assessment. Some conclusions were made in section 6. 

2. Expression and measurement of the fuzziness 
2.1. Expression of the fuzziness 
The resonance zone is a fuzzy sub-set of the frequency domain. The event “resonance 
will not occur” is a fuzzy event, which is noted as Rw . The membership function 

( )
Rw wµ  is used to describe the degree of w  belongs to the resonance zone. It can be 

expressed by normal bathtub curve [5]: 
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where e nw f f= − , ef  is the random excitation frequency, nf  is the fuzzy inherent 
frequency, α andβ are the position and shape parameters respectively of the fuzzy parts. 

The fuzziness of inherent frequency means that its range nF  is a fuzzy subset of the 
frequency domain. The membership function ( )

n
nf fµ  is used to describe the degree of 

nf  belongs to nF . In engineering ( )
n

nf fµ can be considered as trapezoidal, which 

should satisfy some conditions (reference [9]) and its expression is shown as follows [10]: 

1 1

2 2

1 ( ) /      
1                              

( )
1 ( ) /        
0                              

n

n n

n
nf

n n

a f M a M f a
a f b

f
f b M b f b M

else

µ

− − − ≤ <⎧
⎪ ≤ ≤⎪= ⎨
− − < ≤ +⎪

⎪⎩

                           (2) 

where [ , ]a b  is definite and called flat zone, 1[ , ]a M a−  is left fuzzy zone and 1M  is 
the length of the zone, 2[ , ]b b M+  is right fuzzy zone and 2M  denotes its length. 

2.2. Measurement of the fuzziness 
Fuzzy degree denotes the degree of the fuzziness. In the continuous domain, fuzzy degree 
of event or variable can be calculated by the following formula: 

0.5( ) | ( ) ( ) |dD x x xµ µ µ
+∞

−∞
= −∫                                            (3) 
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Substituting (1) into (3), the fuzzy degree of resonance zone is obtained: 

( ) [2 ln 2 4 ( 2ln 2) 3 ] 0.7400
RwD µ β π π β= − Φ + ≈                     (4) 

In formula (4), it can be seen that the fuzzy degree of resonance zone is related to the 
shape parameter β , and not related to the position parameter. Substituting (2) into (3), 
the fuzzy degree of inherent frequency is obtained: 
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In formula (5), it can be seen that the fuzzy degree of trapezoidal inherent frequency is 
related to the lengths 1M  and 2M  of fuzzy zones, and not related to the position 
parameter a  and b . 

3. Reliability model and its numerical solutions 

Let the probability density function (PDF) of random excitation frequency ef  is 

( )
ef eg f , and the membership function of fuzzy inherent frequency nf  is ( )

n
nf fµ . 

The resonance zone is fuzzy, and the membership function of fuzzy event Rw “blade 
resonance will not occur” is ( )

Rw wµ . 

The reliability of blade to avoid resonance is the probability of the event Rw occurs, i.e. 
( )RR P w= . The probability of Rw  can be calculated by the following formula [11]: 

( ) ( ) ( )d
RR wP w w f w wµ

+∞

−∞
= ∫                                             (6) 

where ( )f w  is the PDF of w . Because ef  and nf  are independent and 

e nw f f= − , (6) can be expressed as: 
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where ( )
ef eg f  and ( )

nf ng f  are respectively the PDF of ef  and nf . Because nf  is 
a fuzzy variable and has no PDF, it is needed to translate the membership function 
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( )
n

nf fµ  into a PDF ( )
nf ng f  first. According to the probability theory, ( )

nf ng f  must 

satisfy two properties: (i) ( ) 0; 
nf n ng f f R≥ ∈ ; (ii) ( )d 1
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=∫ . Obviously, 
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n
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The obtained ( )
nf ng f  satisfies the properties (i) and (ii) of PDF. Substituting (8) into 

(7), the reliability R can be calculated as: 
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Formula (9) is just the reliability model of blade to avoid resonance. 

3.1. Solution of the model 
The closed solution of (9) is difficult to obtain, so two numerical methods are given. 

Direct sampling method (DSM): Sample the inherent frequency from ( )
nf ng f  directly. 

Specifically, sample from ( )
ef eg f  and ( )

nf ng f  for N times respectively, and get the 

samples ( 1,2, , )eif i N=  and ( 1,2, , )nif i N= . Because (9) has the equivalent form 
[ ( , )]

Rw e nR E f fµ= , R can be estimated approximately according the following formula: 

1

1ˆ ( , )
R

N

w ei ni
i

R R f f
N

µ
=

≈ = ∑                                              (10) 

Typical distribution sampling method (TDSM): ( )
nf ng f  is not a typical PDF and there 

is no existing command to sample it in common mathematics software, so when DSM is 
adopted, it needs to programme using Monte-Carlo sampling method. Thus, it will take 
more time to sample. In order to raise the efficiency, a numerical method which can 
sample from typical PDF is proposed. 

For arbitrary PDF ( )g ⋅  in real number field, (9) can be rewritten as: 
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So sample from ( )
ef eg f  and ( )ng f  for N times, R  can be estimated as: 

1

1ˆ ( , )
N
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i

R R H f f
QN =

≈ = ∑                                              (11) 

( )ng f  is an arbitrary PDF, so it can be any common typical PDF such as  uniform 
distribution , normal distribution and so on. In this way, time can be saved in sampling 
and the computational efficiency will be raised. 

4. Coefficient of variation 
The coefficient of variation (CV) reflects the relative dispersity of numerical solution, 
and its calculation formula is shown as follows: 

ˆ( )CV R = ˆvar( )R / ˆ| [ ] |E R                                              (12) 

4.1. CV of DSM 
Substituting (10) into (12), the following formulas can be obtained: 

1

1ˆ[ ] [ ( , )] ( , )
R R

N

w e n w ei ni
i

E R E f f f f
N

µ µ
=

= ≈ ∑                                (13) 

2

1 1

var( ( , )) 1ˆvar( ) [ ( , ) ( , )]
( 1)

R

R R

N N
w e n

w ei ni w ei ni
i i

f f
R f f f f

N N N
µ

µ µ
= =

= ≈ −
− ∑ ∑         (14) 

Substituting (13) and (14) into (12), the CV of solution (10) can be calculated. 

4.1. CV of TDSM 
Similarly, for the TDSM solution (11), there are: 
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Substituting (15) and (16) into (12), the CV of solution (11) can be calculated. 
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5. Numerical simulation study 
The first bend frequency of some shoulder blade is about 180Hz. The frequency 
manufacture tolerance is 5%, while the ultra-tolerance phenomenon often occurs in 
practice and the acceptable range is ±8% in engineering. The resonance maybe appears 
when the blade is subjected to the excitation frequency which obeys random distribution 
N (230,10). The reliability of blade to avoid first bending resonance could be assessed. 
Generally, when the engine works, the resonance margin of the lower order mode of 
vibration must be bigger than 10%. Thus the membership function parameters of 
resonance zone can be obtained as α =18.8865 and β =3.281 by using the fuzzy 
comprehensive evaluation method. Meanwhile, according to other known conditions, the 
median of flat zone of inherent frequency is 180Hz, and the length is 180×10%=18, i.e. 
the flat zone is [171,189]. The lengths of bilateral fuzzy zones are both 
180×(8%-5%)=5.4, i.e. 1 2M M M= = =5.4. According to (10) ~ (11), the reliability to 
avoid first bending resonance can be assessed using DSM and TDSM. 

5.1. Reliabilities with different methods 
In this example, DSM and TDSM are adopted respectively to assess the reliability of the 
blade above to avoid first bending resonance, and the spent time is recorded. When 
TDSM is adopted, the chosen sample distributions are respectively typical uniform 
distribution and normal distribution, and untypical linear distribution. 

 

Figure 1. Reliability curves 

Reliability curves with different methods are shown in Fig 1. The abscissa is sampling 
times. It can be seen that the reliability curve obtained by DSM is flatter, which means 
the reliability assessment is stable with lesser samples. Meanwhile, all the three curves 
obtained by TDSM have bigger fluctuation with lesser samples, and when the sampling 
times reach 1.1×107, they tend to flat and are consistent with the curve obtained by DSM. 
This means that more sampling times are required to improve the stability of the 
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reliability obtained by TDSM. 

 

Figure 2. Coefficient of Variation curves 

 

Figure 3. Calculation time curves 

CV curves and calculation time curves with different methods are shown in Fig 2 and Fig 
3 respectively. In Fig 2, it can be seen that the CV of DSM is smallest and the CV of 
TDSM is bigger. Meanwhile, with increasing of sample times, all the four curves 
decrease, i.e. the relative dispersity of reliability assessments decreases, which are 
consistent with the statistical law. From Fig 3, it can be seen that under the same sample 
times, DSM and TDSM with linear sample distribution need more time; while TDSM 
with typical uniform and normal sample distributions need less time and the 
computational efficiencies are higher. With increasing of sample times, the time 
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differences in different methods are bigger and bigger. 

In a word, compared with DSM, TDSM loses some stability, but it improves 
computational efficiency when the sample distribution is typical. Thus, the advantage of 
TDSM is that it can improve computational efficiency by sampling from typical PDF 
instead of the complicated sample distribution in DSM. 

5.2. The influence of fuzzy degree on reliability 
It is shown in (4) and (5) that the fuzzy degrees of resonance zone and inherent frequency 
are determined by the parameters β , 1M  and 2M . Therefore, these parameters are 
changed instead of the variations of fuzzy degrees in this example. 

 

Figure 4. Reliability curves with the change of parameter β  

Reliability curves with the change of parameter β  are shown in Fig.4. It can be seen 
that reliabilities decrease with increasing of the fuzzy degree of resonance zone (i.e. β  
increases). In other words, the fuzzier the resonance zone is, the lower the reliabilities 
will be. 

 

Figure 5. Reliability surfaces with the change of parameters 1M and 2M  
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Reliability surfaces with the change of parameters 1M  and 2M  are shown in Fig 5, 
where (a) is the reliability surface obtained by DSM, (b) is the reliability surface obtained 
by TDSM, and (c) is the color bar figure of the two surfaces. It can be seen that 
reliabilities increase with increasing of the left side fuzzy degree of inherent frequency 
(i.e. 1M increases), and decrease with increasing of the right side fuzzy degree 
(i.e. 2M increases). This is because the mean 230Hz of excitation frequency is in the right 
side of flat zone [ , ]a b  of the first bending frequency, when the left side fuzzy degree of 
inherent frequency increases ( 1M increases), the possibility “the inherent frequency is far 
away from the excitation frequency” increases, thus the reliabilities increase. And when 
the right side fuzzy degree of inherent frequency increases ( 2M  increases), the 
possibility “the inherent frequency is close to the excitation frequency” increases, and 
thus the reliabilities decrease. In engineering, if the mean of excitation frequency is in the 
left side of flat zone of inherent frequency, the reliabilities will have opposite variations 
regularity with each parameter. 

In Fig 5 (c), it can be seen that the reliability assessment surfaces obtained by DSM 
and TDSM are very close. In practice, engineers can choose DSM or TDSM according to 
actual demands: if it requires higher stability, DSM should be chosen; and if it requires 
higher computational efficiency, TDSM with typical sample distribution should be 
chosen. 

6. Conclusions 
The assessment problem of the reliability to avoid resonance was studied in this paper. 
The fuzzy reliability model was established by translating the membership function into 
the corresponding probability density function by using the normalized method. 
Meanwhile, direct sampling method and typical distribution sampling method were 
proposed to solve the model, and the calculation formulas of the coefficient of variation 
of the two solutions were given. The simulation examples showed that both DSM and 
TDSM can assess the reliability to avoid resonance. DSM is suitable for the reliability 
assessment problems which require a more steady result, and TDSM is suitable for the 
reliability assessment problems which require a higher computational efficiency. 
Furthermore, the fuzzier the resonance zone is, the smaller the reliability is. And if the 
mean of excitation frequency is in the right side of the flat zone of inherent frequency, the 
reliabilities increase with increasing of the left side fuzzy degree, and decrease with 
increasing of the right side fuzzy degree, and vice versa. 
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