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ABSTRACT 
 

In this paper we establish a tripled coincidence point theorem in probabilistic metric 

spaces. Tripled fixed points are extensions of coupled fixed points, a concept which 

has been in focus in recent times. The result is supported with an example. 
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1. Introduction 
Coupled fixed point problems have a large share in the recent development of metric 
fixed point theory [1, 3, 11, 13, 15, 19]. These problems have often, but not always, 

been considered in metric spaces with a partial order. In fact a large number of fixed 

point results of different types have been treated in partially order metric spaces in 
recent times. The importance of these problems lie in the fact that combinations of 

analytic and order theoretic approaches are applied in the proofs of the theorems. 

There is a parallel development of fixed point theory in probabilistic metric spaces. 

These spaces are probabilistic generalizations of metric spaces where the metric 
values are distribution functions. This development was initiated in the work of 

Sehgal and Bharucha-Reid in [21] where they established a probabilistic version of 

the Banach’s contraction mapping principle. Today, this line of research is a 
developed branch of analysis in its own right. Hadzic and Pap have given a good 

account of this study in their book [9]. Some more recent results are in [8, 12, 14, 16, 

17, 18]. Particularly, couple fixed point in probabilistic metric spaces have been 
established in [5] and [10]. 

In a recent work [2] Berinde et al. has successfully extended the idea of the 

coupled fixed point to tripled fixed point and has established a tripled fixed point 
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theorem in metric spaces with a partial ordering. The purpose of this paper is to 

establish a tripled fixed point result in a partially ordered probabilistic metric space. 

Our problem is different from that addressed by Berinde et al. in [2], not a 

probabilistic extension of it. The method of the proof is also different. The main 
result is supported with an example. In this context we note that fixed point problems 

in partially ordered probabilistic metric spaces have begun to be addressed in recent 

time in [5, 6] of which [5] is a coupled fixed point result.  
 

2. Mathematical Preliminaries 

In this section we discuss certain definitions and results which are necessary for 
establishing the results in the next section. 

Throughout this paper ( , )X   stands for a partially ordered set with partial order  . 

By x y , we mean that y x  and by x y , we mean that x y  and x y . 

 

Definition 2.1 [9, 20]  A mapping F : R → R
+
 is called a distribution function if it is 

non-decreasing and left continuous with inf ( ) 0
t R

F t


  and sup ( ) 1
t R

F t


 , where R is 

the set of real numbers and R
+
 denotes the set of non-negative real numbers. 

 

Definition 2.2 [9, 20] A binary operation 
2:[1,0] [0,1]   is called a t-norm if the 

following properties are satisfied: 
 

(i) Δ is associative and commutative, 

(ii) ( ,1)a a  for all [0,1]a , 

(iii) ( , ) ( , )a b c d   whenever a c  and b d , for all , , , [0,1]a b c d  . 

  Typical examples of t-norm are ( , ) min{ , }M a b a b  , ( , )P a b ab  . 

 

Definition 2.3 [9, 20] A Menger space is a triplet (X, F, Δ), where X is a non empty 

set, F is a function defined on X X  to the set of distribution functions and Δ is a 

t-norm, such that the following are satisfied: 

 

(i) , (0) 0x yF  for all ,x y X , 

(ii) , ( ) 1x yF s   for all 0s   and ,x y X if and only if x y , 

(iii) , ,( ) ( )x y y xF s F s  for all , , 0x y X s  , 

(iv) , , ,( ) ( ( ), ( ))x y x z z yF u v F u F v    for all , 0u v   and , ,x y z X . 

 

Definition 2.4 [9, 20]   Let (X, F, Δ) be a Menger space. 

 

(i) A sequence { }nx  in X is said to be convergent to a point x X  if  



Tripled Coincidence Point Results In Partially Ordered Probabilistic Metric Spaces 

 

11 

 

 

n
Lt 1)(, tF xxn

 for all 0t  . 

(ii) A sequence { }nx  in X is called a Cauchy sequence if for each 0 1   and 

0t  , there exists Nn 0 such that 
, ( ) 1

n mx xF t    for each 0,n m n . 

(iii) A Menger space in which every Cauchy sequence is convergent is said to be 

complete. 

 
Lemma 2.5 [4] If (X, F, Δ) is a Menger space where Δ is continuous t-norm, then for 

every fixed 0t  , if ,n nx x y y  , then 

  , ,lim ( ) ( )
n nx y x y

n
F t F t


 . 

In the following lemma we note a property of a continuous function which 
we use in 

the proof of our main result. The proof is a consequence of the definition of 

continuity. 

 

Lemma 2.6 If  : nf R R  is continuous and , 1{ } , 1,2,.....,i j ia j n

   are such that 

liminf ik k
i

a a


  for all k l  for some l  and 
1{ }ii ia 


 is bounded. Then 

),...,inflim,.....,(),.....,,(inflim 2121 nil
i

inii
i

aaaafaaaf


 . 

 

Definition 2.7 [7] The family of functions   is such that, for each 

, : R R      and satisfies the following conditions: 

(i)   is strict increasing, 

(ii)   is upper semi-continuous from the right 

(iii) 
0

( )n

n
t




   for all 0t  , 

where ( )n t  is the n-th iteration of ( )t . 

It is immediate that if   , then ( )t t  for all 0t  .              

 

Lemma 2.8 [10]  Let { }nx  be a sequence in a Menger space (X, F, Δ), where Δ is a 

minimum t-norm. If there exists a function    such that 

1 1 1, , ,( ( )) min{ ( ), ( )}
n n n n n nx x x x x xF t F t F t

  
  

for all 0, 1t n  . Then { }nx  is a Cauchy sequence in X. 

 

Lemma 2.9 [7]  Let (X, F, Δ) is a Menger space. If there exists    such that 

, ,( ( ) 0) ( )x y x yF t F t   for all 0t   and ,x y X , then x y . 
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   Let ( , )X   be a partially ordered set and :G X X  be a mapping. The mapping 

G  is said to be non-decreasing if, for all 1 2,x x X , 1 2x x  implies 1 2( ) ( )G x G x  

and non-increasing if, for all 1 2,x x X , 1 2x x  implies 1 2( ) ( )[1]G x G x . 

 

Definition 2.10 [2] Let ( , )X   be a partially ordered set and :G X X X X    

be a mapping. The mapping G is said to have the mixed monotone property if G is 
non-decreasing in its first and third arguments and is non-increasing in its second 

argument, that is, if, for all 1 2 1 2 1 2, , , , ,x x y y z z X , 

(i) 1 2x x  implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,y z X , 

(ii) 1 2y y implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,x z X  

and 

(iii) 1 2z z  implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,x y X . 

 

Definition 2.11 [2] Let ( , )X   be a partially ordered set. :G X X X X    and 

:g X X  be two mappings. The mapping G is said to have the mixed  

g-monotone property if G is non-decreasing in its first and third arguments and is 

non-increasing in its second argument, that is, if, for all 1 2 1 2 1 2, , , , ,x x y y z z X , 

(i) 1 2gx gx  implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,y z X , 

(ii) 1 2gy gy implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,x z X  

and 

(iii) 1 2gz gz  implies 1 2( , , ) ( , , )G x y z G x y z  for fixed ,x y X . 

 

Remark. If g I , the identity mapping, then Definition 2.11 reduces to Definition 

2.10. 

 

Definition 2.12 [2] Let X  be a nonempty set. An element ( , , )x y z X X X    is 

called a tripled fixed point of the mapping :G X X X X    if 

 

  ( , , )G x y z x , ( , , )G y x y y  and ( , , )G z y x z . 

 

Definition 2.13 [2] Let X  be a nonempty set. An element ( , , )x y z X X X    is 

called a tripled coincidence point of the mappings :G X X X X   and 

:g X X  if 

  ( , , )G x y z gx , ( , , )G y x y gy  and ( , , )G z y x gz . 

 

Remark. If g I , the identity mapping, then Definition 2.13 reduces to Definition 

2.12. 
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Definition 2.14 [2] Let X  be a nonempty set and the mappings 

:G X X X X   and :g X X  are commuting if for all , ,x y z X  

 

  ( , , ) ( , , )gG x y z G gx gy gz . 

 

Definition 2.15 Let ( , , )X F   be a Menger space. The mappings g  and G  where 

:g X X  and :G X X X X   , are said to be compatible if for all 0t   

  ( , , ), ( , , )lim ( ) 1
n n n n n ngG x y z G gx gy gz

n
F t


 , 

  ( , , ), ( , , )lim ( ) 1
n n n n n ngG y x y G gy gx gy

n
F t


  

and 

  ( , , ), ( , , )lim ( ) 1
n n n n n ngG z y x G gz gy gx

n
F t


 , 

whenever { },{ }n nx y  and { }nz  are sequences in X  such that 

lim ( , , ) lim , lim ( , , ) limn n n n n n n n
n n n n

G x y z gx x G y x y gy y
   

     and 

lim ( , , ) limn n n n
n n

G z y x gz z
 

  .  

 

3. Main Results 

Theorem 3.1 Let ( , , )X F   be a complete Menger space where Δ is a minimum t-

norm on which a partial ordering   is defined. Let :G X X X X   and 

:g X X  be two mappings such that G has the mixed g-monotone property. Let 

there exist    and 0q   such that 

( , , ), ( , , ) , ( , , ) , ( , , )( ( )) (1 max{ ( ( )), ( ( ))}G x y z G u v w gx G u v w gu G x y zF t q F t F t     

                                 , , ( , , ) , ( , , )min{ ( ), ( ), ( )}gx gu gx G x y z gu G u v wF t F t F t ,           (3.1) 

for all 0t  , , , , , ,x y z u v w X  with gugx , gvgy  and gz gw . Also g is 

continuous, monotonic increasing, compatible with G and such that 

( ) ( )G X X X g X   . Also suppose either 

(a) G  is continuous or 

(b) X  has the following properties: 

(i) if a non-decreasing sequence { }nx x , then nx x  for all 0n  ,    (3.2) 

(ii) if a non-increasing sequence { }ny y , then ny y  for all 0n  .  (3.3) 

If there are 0 0 0, ,x y z X  such that 0 0 0 0 0 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 

0 0 0 0( , , )gz G z y x , then g and G have a tripled coincidence point in X, that is, there 

exist , ,x y z X  such that ( , , ), ( , , )gx G x y z gy G y x y   and ( , , )gz G z y x . 
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Proof.  By the condition of the theorem, there exist 0 0 0, ,x y z X  such that 

0 0 0 0 0 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 0 0 0 0( , , )gz G z y x . Since 

( ) ( )G X X X g X   , it is possible to define the sequences { },{ }n nx y  and 

{ }nz in X  as follows: 

1 0 0 0 1 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 1 0 0 0( , , )gz G z y x  

2 1 1 1 2 1 1 1( , , ), ( , , )gx G x y z gy G y x y  and 2 1 1 1( , , )gz G z y x  

and, in general, for all 0n  , 

),,(1 nnnn zyxGgx   , ),,(1 nnnn yxyGgy    and 1 ( , , )n n n ngz G z y x  .     (3.4)        

Next, for all 0n  , we prove that 

             1n ngx gx                               (3.5) 

             1n ngy gy                   (3.6) 

             1n ngz gz  .                  (3.7) 

 

Since 0 0 0 0 0 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 0 0 0 0( , , )gz G z y x , in view of the 

facts that 1 0 0 0 1 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 1 0 0 0( , , )gz G z y x  we have  

0 1 0 1,gx gx gy gy   and 0 1gz gz . Therefore (3.5), (3.6) and (3.7) hold for 0n  . 

Let (3.5), (3.6) and (3.7) hold for some n m , that is, 1 1,m m m mgx gx gy gy   and 

1m mgz gz  . As G has the mixed g-monotone property, from (3.4), we get 

1 1 1 1 1 2( , , ) ( , , ) ( , , )m m m m m m m m m m mgx G x y z G x y z G x y z gx        , 

1 1 1 1 1 1 2( , , ) ( , , ) ( , , )m m m m m m m m m m mgy G y x y G y x y G y x y gy         , 

1 1 1 1 1 2( , , ) ( , , ) ( , , )m m m m m m m m m m mgz G z y x G z y x G z y x gz        . 

Thus (3.5), (3.6) and (3.7) hold for 1n m  . So, by induction, we conclude that 

(3.5), (3.6) and (3.7) hold for .1n  

 

Now, for all 0t  , 1n , we have 

 

1 1 1 1, ( , , ), ( , , )( ( )) ( ( ))
n n n n n n n ngx gx G x y z G x y zF t F t 

   
   (by(3.4)) 

  
1 1 1 1 1, , ( , , ) , ( , , )min{ ( ), ( ), ( )}

n n n n n n n n n ngx gx gx G x y z gx G x y zF t F t F t
    

  

1 1 1 1, ( , , ) , ( , , )(1 max{ ( ( )), ( ( ))})
n n n n n n n ngx G x y z gx G x y zq F t F t 
   

 

       (by(3.1)) 

  =
1 1 1, , ,min{ ( ), ( ), ( )}

n n n n n ngx gx gx gx gx gxF t F t F t
  

 

   
1 1, ,(1 max{ ( ( )), ( ( ))})

n n n ngx gx gx gxq F t F t 
 

   

  =
1 1, ,min{ ( ), ( )} (1 1)

n n n ngx gx gx gxF t F t q
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  =
1 1, ,min{ ( ), ( )}

n n n ngx gx gx gxF t F t
 

. 

Then, by Lemma 2.8, we conclude that { }ngx  is a Cauchy sequence. 

Again, for all 0t  , 1n , we have 

1 1 1 1, ( , , ), ( , , )( ( )) ( ( ))
n n n n n n n ngy gy G y x y G y x yF t F t 

   
   (by(3.4)) 

  
1 1 1 1 1, , ( , , ) , ( , , )min{ ( ), ( ), ( )}

n n n n n n n n n ngy gy gy G y x y gy G y x yF t F t F t
    

  

   
1 1 1 1, ( , , ) , ( , , )(1 max{ ( ( )), ( ( ))})

n n n n n n n ngy G y x y gy G y x yq F t F t 
   

   

         (by(3.1)) 

  =
1 1 1, , ,min{ ( ), ( ), ( )}

n n n n n ngy gy gy gy gy gyF t F t F t
  

 

   
1 1, ,(1 max{ ( ( )), ( ( ))})

n n n ngy gy gy gyq F t F t 
 

   

  =
1 1, ,min{ ( ), ( )} (1 1)

n n n ngy gy gy gyF t F t q
 

   

  =
1 1, ,min{ ( ), ( )}

n n n ngy gy gy gyF t F t
 

. 

Then, by Lemma 2.8, we conclude that }{ ngy  is a Cauchy sequence. 

For all 0t  , 1n , we have 

1 1 1 1, ( , , ), ( , , )( ( )) ( ( ))
n n n n n n n ngz gz G z y x G z y xF t F t 

   
   (by(3.4)) 

  
1 1 1 1 1, , ( , , ) , ( , , )min{ ( ), ( ), ( )}

n n n n n n n n n ngz gz gz G z y x gz G z y xF t F t F t
    

  

   
1 1 1 1, ( , , ) , ( , , )(1 max{ ( ( )), ( ( ))})

n n n n n n n ngz G z y x gz G z y xq F t F t 
   

   

         (by(3.1)) 

  =
1 1 1, , ,min{ ( ), ( ), ( )}

n n n n n ngz gz gz gz gz gzF t F t F t
  

 

   
1 1, ,(1 max{ ( ( )), ( ( ))})

n n n ngz gz gz gzq F t F t 
 

   

  =
1 1, ,min{ ( ), ( )} (1 1)

n n n ngz gz gz gzF t F t q
 

   

  =
1 1, ,min{ ( ), ( )}

n n n ngz gz gz gzF t F t
 

. 

Then, by Lemma 2.8, we conclude that { }ngz  is a Cauchy sequence. 

Since X  is complete, there exist , ,x y z X  such that 

  lim , limn n
n n

gx x gy y
 

   and lim n
n

gz z


 , 

that is, 1 1lim ( , , ) lim , lim ( , , ) limn n n n n n n n
n n n n

G x y z gx x G y x y gy y 
   

     and 

1lim ( , , ) limn n n n
n n

G z y x gz z
 

  .               (3.8) 

 

By continuity of g we get 

lim ( ) , lim ( )n n
n n

g gx gx g gy gy
 

   and lim ( )n
n

g gz gz


 . 

Since ( , )g G  is a compatible pair and using continuity of g, we have 

1lim ( ) lim ( ( , , )) lim ( , , )n n n n n n n
n n n

gx g gx g G x y z G gx gy gz
  

   ,           (3.9) 
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1lim ( ) lim ( ( , , )) lim ( , , )n n n n n n n
n n n

gy g gy g G y x y G gy gx gy
  

            (3.10) 

and 

1lim ( ) lim ( ( , , )) lim ( , , )n n n n n n n
n n n

gz g gz g G z y x G gz gy gx
  

   .         (3.11) 

 

Next we show that ( , , ), ( , , )gx G x y z gy G y x y  and ( , , )gz G z y x . 

Let the assumption (a) holds. From (3.9), (3.10) and (3.11), by (3.8) and continuity 

of G, we get 
 

),,()lim,lim,lim(),,(lim)(lim 1 zyxGgzgygxGgzgygxGgxggx n
n

n
n

n
n

nnn
n

n
n







 

),,()lim,lim,lim(),,(lim)(lim 1 yxyGgygxgyGgygxgyGgyggy n
n

n
n

n
n

nnn
n

n
n







 

and 
 

),,()lim,lim,lim(),,(lim)(lim 1 xyzGgxgygzGgxgygzGgzggz n
n

n
n

n
n

nnn
n

n
n







. 

 

Next we assume that (b) holds. By (3.5), (3.6), (3.7) and (3.8), we have { }ngx  is 

non-decreasing sequence with ngx x , { }ngy  is non-increasing sequence with 

ngy y  as n  and { }ngz  is non-decreasing sequence with ngz z . Then, 

by (3.2) and (3.3) we have for all 0n  , 

  ngx x , ngy y  and ngz z . 

Since, g is monotonic increasing, so 

( )ng gx gx , gygyg n )(  and ( )ng gz gz .            (3.12) 

 

Then, for all 0t  , 0n  ,  we have for 0 1k   

))}(()),()(({))(( ),,(),()(,),,(, 11
ktFkttFtF zyxGgxggxggxzyxGgx nn




 . 

Again, (3.9) implies that for all 0t  , 

                               1)(lim )(, 1



tF

ngxggx
n

.                        (3.13) 

 

Taking limit on both sides of above inequality, for all 0t  , we have 

))}(()),()(({inflim))(( ),,(),()(,),,(, 11
ktFkttFtF zyxGgxggxggx

n
zyxGgx nn







 

                        = ))}((inflim)),()((lim{ ),,(),()(, 11
ktFkttF zyxGgxg

n
gxggx

n nn


 
  

            (by the continuity Δ, (3.13) and Lemma 2.6) 

            = ( , , ), ( , , )min{1, liminf ( ( ))}
n n nG gx gy gz G x y z

n
F kt
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            = ( , , ), ( , , )liminf ( ( ))
n n nG gx gy gz G x y z

n
F kt


 

            ( ), ( ), ( , , ) , ( , , )liminf[min{ ( ), ( ), ( )}
n n n n ng gx gx g gx G gx gy gz gx G x y z

n
F kt F kt F kt


  

( ), ( , , ) , ( , , )(1 max{ ( ( )), ( ( ))}]
n n n ng gx G x y z gx G gx gy gzq F kt F kt    

       (by (3.1) and (3.12)) 

        ( ), ( ), ( , , ) , ( , , )min{lim ( ), liminf ( ), ( )}
n n n n ng gx gx g gx G gx gy gz gx G x y z

n n
F kt F kt F kt

 
  

 ( ), ( , , ) , ( , , )(1 max{lim ( ( )), lim ( ( ))})
n n n ng gx G x y z gx G gx gy gz

n n
q F kt F kt 

 
   

      (by lemma 2.5 and (3.13)) 

          = 
, , , ( , , )min{ ( ), ( ), ( )}gx gx gx gx gx G x y zF kt F kt F kt  

             
, ( , , ) ,(1 max{ ( ( )), ( ( ))})gx G x y z gx gxq F kt F kt    

          = 
, , ( , , )min{ ( ), ( )}gx gx gx G x y zF kt F kt  

            
, ( , , ) ,(1 max{ ( ( )), ( ( ))})gx G x y z gx gxq F kt F kt    

          
, ( , , )min{1,  ( )} (1 1)gx G x y zF kt q    

          
, ( , , )  ( )gx G x y zF kt . 

The value of k  being arbitrarily in (0,1) , taking 1k  , and using the left 

continuity of F , we have 

, ( , , ) , ( , , )( ( )) ( )gx G x y z gx G x y zF t F t  . 

Since   is increasing, ( ) 0 ( )t t   . Again F  is monotone increasing. 

Therefore , ( , , ) , ( , , ) , ( , , )( ( ) 0) ( ( )) ( )gx G x y z gx G x y z gx G x y zF t F t F t    . 

Then, by an application of lemma 2.9, we get ( , , )gx G x y z . 

Similarly, we can show that ( , , )gy G y x y  and ( , , )gz G z y x , that is, g  and 

G  have a tripled coincidence point in X . 

This completes the proof of the Theorem 3.1. 
 

Corollary 3.2 Let ( , , )X F  be a complete Menger space where M   , the 

minimum t-norm, on which a partial ordering   is defined.  

Let :G X X X X   and :g X X  be two mappings such that G has the 

mixed g-monotone property. Let there exists    such that 

 ( , , ), ( , , ) , , ( , , ) , ( , , )( ( )) min{ ( ), ( ), ( )}G x y z G u v w gx gu gx G x y z gu G u v wF t F t F t F t  ,     (3.14) 

for all 0t  , , , , , ,x y z u v w X  with ,gx gu gy gv   and gz gw . Also g is 

continuous, monotonic increasing, commutating with G and such that 

( ) ( )G X X X g X   . Also suppose either 

(a) G  is continuous or 

(b) X  has the following properties: 
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(i) if a non-decreasing sequence { }nx x , then nx x  for all 0n  , 

(ii) if a non-increasing sequence { }ny y , then ny y  for all 0n  . 

If there are 0 0 0, ,x y z X  such that 0 0 0 0 0 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 

0 0 0 0( , , )gz G z y x , then g and G have a tripled coincidence point in X, that is, there 

exist , ,x y z X  such that ( , , ), ( , , )gx G x y z gy G y x y   and ( , , )gz G z y x . 

Proof. Since commutativity implies compatibility, the proof is completed by an 

application of theorem 3.1 in case where 0q  . 

We have the following corollary if we take ( )t kt   in Theorem 3.1. 

 

Corollary 3.3 Let ( , , )X F  be a complete Menger space where M   , the 

minimum t-norm, on which a partial ordering   is defined. 

Let :G X X X X   and :g X X  be two mappings such that G has the 

mixed g-monotone property. Let there exist    and 0q  such that 

( , , ), ( , , ) , ( , , ) , ( , , )( ) (1 max{ ( ), ( )}G x y z G u v w gx G u v w gu G x y zF kt q F kt F kt   

   , , ( , , ) , ( , , )min{ ( ), ( ), ( )}gx gu gx G x y z gu G u v wF t F t F t , 

for all 0t  , , , , , ,x y z u v w X , 0 1k   with ,gx gu gy gv   and gz gw . 

Also g is continuous, monotonic increasing, compatible with G and such that 

( ) ( )G X X X g X   . Also suppose either 

(a) G  is continuous or 

(b) X  has the following properties: 

(i) if a non-decreasing sequence { }nx x , then nx x  for all 0n  , 

(ii) if a non-increasing sequence { }ny y , then ny y  for all 0n  . 

If there are 0 0 0, ,x y z X  such that 0 0 0 0 0 0 0 0( , , ), ( , , )gx G x y z gy G y x y  and 

0 0 0 0( , , )gz G z y x , then g and G have a tripled coincidence point in X, that is, there 

exist , ,x y z X  such that ( , , ), ( , , )gx G x y z gy G y x y   and ( , , )gz G z y x . 

 

Example 3.4 Let  ( , )X   is the partially ordered set with [0,1]X   and the natural 

Ordering   of the real numbers as the partially ordering  . Let 

| |

, ( )
x y

t
x yF t e




  for 

all ,x y X  and M   , the minimum t-norm, then ( , , )X F   is a complete 

Menger space. 

Let the mapping :g X X be defined as 

              gx x  for all x X  

and the mapping :G X X X X    be defined as 
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,
( , , ) 6

0,

x y z

G x y z

 


 



   
if , , [0,1], ,

.

x y z x y z

otherwise

  
 

Here G  satisfies the mixed g-monotone property. ( ) ( )G X X X g X   , g is 

continuous, monotonic increasing and commutating with G and   is a  -function 

with 
2

( )
3

t t   for ),0[ t . 

Let 0 00, 0x z   and 0 0y c  . 

Then 0 0 0 00 (0, ,0) ( , , )gx g G c G x y z   , 

          0 0 0 00 ( ,0, ) ( , , )gy gc c G c c G y x y      and 

           0 0 0 00 (0, ,0) ( , , )gz g G c G z y x   . 

Thus 0x , 0y  and 0z  satisfy their requirements in corollary 3.2.  

Let , , , , ,x y z u v w X  are such that  gugx  , gvgy   and gwgz  , that is, 

x u , y v  and z w . 

We show that the inequality (3.14) is satisfied for all 0t   and , , , , ,x y z u v w  

chosen to satisfy the above requirements. 

Let 

| | | ( , , )| | ( , . )|

min{ , , }
x u x G x y z u G u v w

t t tM e e e
  

  

 . 

We consider the following possible cases. 

Case I. x y z  and u v w  , 

| ( , , ) ( , , )|

( )

( , , ), ( , , ) ( ( ))

G x y z G u v w

t

G x y z G u v wF t e 




  

          =

| |
6 6

( )

x y z u v w

te 

   




 

                      =

|( ) ( ) ( )|

6 ( )

x u y v z w

te 

    


 

          =

|( ) ( ) ( )|

4

x u y v z w

te
    



   (since 
2

( )
3

t t  ) 

           t

wzvyux

e 4

)()()( 


  

            

                                  t

wzvxvx

e 4

)()()( 


  

 

 (since x y z  and u v w  ) 

           =

|( )| |( )| |( )|

4 4 4. .
x v x v z w

t t te e e
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           =

|( )| |( )|

4 4.
x v x v

t te e
 

 

  (by taking w z ) 

           = t

vx

e 2

)( 


 

           
( )

6

x x y z

t te
 

 

   (since ( ) 0
6 2

x x y z x v

t t t

  
   ) 

            M  
 

Case II. x y z  and v u w   ( x y z  and v w u  ), 

  or 

u v w   and x z y  (u v w   and z x y  ). 

| ( , , ) ( , , )|

( )

( , , ), ( , , ) ( ( ))

G x y z G u v w

t

G x y z G u v wF t e 




  

          = 

| 0|
6

( )

x y z

te 

 




 

          = 

| |

6 ( )

x y z

te 

 


 

          = 

| |

4

x y z

te
 



    (since 
2

( )
3

t t  ) 

         
( )

6

x x y z

t te
 

 

                   (since ( ) 0
6 4

x x y z x y z

t t t

   
   ) 

         M  
 

Case III. x y z   and u v w  ( x y z   and u w v  ) 

  or 

 u v w   and y z x  (u v w   and y x z  ). 

In this case the inequality (3.14) is trivially satisfied. 

Taking into account all the three cases mentioned above, we conclude that the 

inequality (3.14) is satisfied by , , , , ,x y z u v w  chosen according to the conditions 

given in corollary 3.2 and for all 0t  . Thus all the conditions of corollary 3.2 are 

satisfied. Then, by an application of the corollary 3.2, we conclude that g and G have 

a tripled coincidence point. Here (0,0,0)  is a tripled coincidence point of g and G  

in X . 

 

Remark 

Since by omitting the third variable, coupled coincidence point results are obtained 
from tripled coincidence point results, so our result is a genuine extension of the 

result proved by Hu and Ma[10]. 
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