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ABSTRACT 

 

A distributive nearlattice S  with 0 is  disjunctive if ba 0  implies the existence 

of Sx  such that 0=  ax   and bx 0 . A nearlattice S  with 0 is  Semi-

Boolean if it is distributive and the interval ][0, x  is complemented for each Sx .  

 In this paper , we establish the following fundamental results :  

When S  is a distributive nearlattice with a central element n , then )(SPn  is 

disjunctive if and only if each dense n -ideal J  is both join and meet-dense which is 

equivalent to the condition that the n -kernel of each skeletal congruence is an 

annihilator n -ideal. )(SPn   is  semi-Boolean  if  and only  if  for  each  n -ideal J , 

 )(=)( JJ  when n  is a central element of S . When S  is a distributive 

nearlattice with a central element n , )(SPn  is semi-Boolean if and only if the map 

 nKer  is a lattice isomorphism of )(SSC  onto )(SSCKn  whose inverse is 

the map )(JJ  , J  is an n -ideal of S . 

 

Keywords: n -Kernels of a congruence, Dense subset, Disjunctive nearlattice, 

ssSemi-Boolean nearlattice. 
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1. Introduction  
Skeletal  congruences  on  distributive  lattices have been studied by Cornish[3]. 

Then Latif in [6] studied the n- Kernels of skeletal congruences on a distributive 
lattice. Disjunctive (sectionally semicomplemented) lattices have been studied by 

many authors including [3], Then [9] has extended the concept for nearlattices. On 

the other hand Latif in [6] has generalized the results of [3] for n -ideals in lattices. 

In this paper we have extended and generalized those results for nearlattices. 
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        A nearlattice S  is a meet semilattice with the property that any two elements 

possessing a common upper bound, have a supremum. Nearlattice S  is distributive 

if for all Szyx ,, , )()(=)( zxyxzyx   provided zy  exists. For 

detailed literature on nearlattices and its congruences and ideals we refer the reader 

to [7], [8] and [9]. Here )(SC  denotes the lattice of congruences of S . For any 

)(SC , 
  denotes the pseudocomplement of  . For a nearlattice S , we 

define the  skeleton  

 
 :)({)( SCSSC   for some   )(SC }  

             }:)({  SC   

The pseudocomplement 
J  of an ideal J  is the  annihilator ideal   

 }.    0=:{= JjallforjxSxJ 
 

The kernel of congruence    

                       }.0:{=  xSxKer  

For an ideal J  of a distributive nearlattice S , we define )(J  by )(Jyx   if 

and only if JyJx  ](=]( ,which is the smallest congruence of S  containing J  

as a class. 

       Of course JJKer =)( . 

        For a fixed element Sn , a convex subnearlattice of S  containing n  is 

called an n -ideal. For detailed literature on n -ideals see [ 2 ]. 

An element s  of a nearlattice S  is called  standard if for all Syxt ,, ,  

)()(=)]()[( sxtyxtsxyxt  . 

The element s  is called  neutral if 

  (i)    s  is standard and 

  (ii)   for all Szyx ,, , )()(=)]()[( zxsyxszxyxs  .  

An element n  of a nearlattice S  is called  medial if 

)()()(=),,( nynxyxynxm   exists in S  for all Syx , . An element 

n  in a nearlattice S  is called  sesquimedial if for all Szyx ,, , 

  )()()]()[()]()[( zyyxnznynynx   exists in S . An 

element n  of a nearlattice S  is called an  upper element if nx  exists for all 

Sx . Every upper element is of course a sesquimedial element. An element n  is 

called a  central element of S  if it is neutral, upper and complemented in each 

interval containing it. 

      When n  is a medial element, then for any n -ideal J  of a distributive 

nearlattice S , 

we define  

           }.    =),,(:{= JjallfornjnxmSxJ 
 

Obviously 
J  is an n -ideal which we call, the annihilator n -ideal of J. We define 
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the   n-kernel of a congruence   by }:{=  nxSxKern , which is clearly 

an n-ideal. 

Skeletal congruences in lattices have been studied by [3]. Then [9] have extended 
those results for nearlattices. Recently [1] have generalized some of their results for 

n -ideals. 

)(SC  is called dense if = , while an n-ideal J is called dense    if   

}{= nJ 
.    A non-empty subset T of a nearlattice S is called join-dense if each 

Sz  is the join of its predecessors in T, while T is called meet-dense if each Sz  

is the meet of its successors in T. 

        A distributive nearlattice S  with 0 is called  disjunctive if ba <0   implies 

the existence of Sx  such that 0=ax   and bx <0 . A nearlattice S with 0 is  

semi-Boolean if it is distributive and the interval ][0, x  is complemented for each 

Sx . 

   An n-ideal generated by a single element a  is called a principal n-ideal, denoted 

by na >< . The set of principal n-ideals is denoted by )(SPn . When Sn  is 

standard and medial then for any Sa  

                           )}()(:{ nyayynaSya n     

                                      )}()()(:{ nanyayySy    

When n  is an upper element, then na ><  is the closed interval [ nana  , ]. By 

[7], for a medial and standard element n , )(SPn  is a meet semilattice. Also, when 

n  is neutral and sesquimedial, )(SPn  is a nearlattice. Moreover, when n  is central, 

then )[]()( nnSP d

n  . 

        In this paper, we generalize several results of [9] on disjunctive and semi-

Boolean nearlattices in terms of )(SPn . By [2] we   know  that  for  any  n-ideal  J  

of a  distributive  medial nearlattice S, R(J) denotes the largest congruence having J 

as its kernel, where )(JyRx   if and only if for each Sr , Jrnxm ),,(  if and 

only if Jrnym ),,( . 

        The  following  result  is  due  to [9] which  gives a  description of disjunctive 

nerlattices. 

 
Theorem 1.1.    For a distributive nearlattice S  with 0,  the following conditions are 

equivalent:   

    (i)    S  is disjunctive. 

   (ii)    For all Sa , 
](=]( aa . 

   (iii)  =((0])R . 

Following result is due to [7] which will be needed for the development of this 

paper. 
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Theorem 1.2.   For a neutral element n  of a nearlattice  S,  the following conditions 

are equivalent : 
   (i)    n  is central in  S 

   (ii)   n  is upper and the map )[]()(: nnSP d

n    defined by 

          ),(=>< nanaa n    is an isomorphism,  where 
dn](   represents  the 

dual of   the lattice  (n].    

Now we extend the above Theorem 1.1. 

 

Theorem 1.3.    Suppose S  is a distributive medial nearlattice with a central element 
n.  Then the following conditions are equivalent : 

   (i)     )(SPn   is disjunctive 

  (ii)     For each 
 nn aaSa >=<><  , . 

  (iii)   =})({nR   

Proof.  )()( iii  . Here n is central, and so it is upper. 

Suppose )(SPn  is disjunctive and suppose that 
 nn aa ><><  for some Sa . 

Since 
 nn aa ><>< , so there exists 

 nat ><  but ],[=>< nanaat n   

which implies either tna   or nat  . 

Suppose tna  , then nanat  < . 

Thus, ],[],[ nnatnna   and so nn natnan >><}{  . 

Since )(SPn  is disjunctive, so there exists nb ><  such that 

nn natbn ><>}{   and }{=><>< nbna nn  . 

This implies }{=]),()[( nnnbna  , and so .=)()( nnbna   

 

Now, 

     )]()(),()[( nbnanbnaba nn                                     

                               )]()(,[ nbnan   =  {n}  as  .nb   

   Hence 
 nn ab . 

Now       nn nat  n b  b  

            ]),()[( nnatnb   

            ])),()(())()[(( nnbnanbnt   

            ],))()[(( nnnbnt   

            ]),()[( nnbnt   

      nn bnt   

      }{n  as 
 nant  and 

 nn ab . 

Thus }{=>< nb n , which is a contradiction. 



Disjunctive Nearlattices and Semi-Boolean Algebras 

 

35 
 

Therefore, 


nn aa >=<><  for all Sa , which is (ii). 

Again, suppose )( nat  . 

Then )()( nant   and hence )()( ntatt  . 

That is, tntat <)()(   and so ntnat  <)( . 

Thus, nn ntnatn >>)(<}{   

Since )(SPn  is disjunctive so there exists nc ><  such that  

nn ntcn ><>}{   and }{=>)(<>< nnatc nn  . 

This implies }{=])(,[],[ nnatnncnc   and so  

}{=)]())((,[ nncnatn  . 

Thus nncnat =))()((  . 

That is, nncat =)(   and so ncat  . 

Also, nncat =)(   implies nnanct =][])[(  . 

Hence, 
 nn anct ><>)(< .   

Now,    < c > n   =  < c > n   < t  n > n  

               =  [c  n, c n]   [n, t  n] 
               =  [n, (t  c)   n] 

               =  < t  n > n   < (t  c)   n > n  

               =  {n}  as  < (t  c)   n >
 nn a   

 and  
 nant . 

Thus }{=>< nc n , which is a contradiction. 

Therefore 


nn aa >=<><  for all Sa . 

Thus (ii) holds. 

)()( iii  . Suppose 


nn aa >=<><  for all Sa . 

Now let ban < . Then nn ban >><}{  and 


nn aa >=<>< ,  



nn bb >=<><  implies 
 nn ba >>< . So there exists 

 nar ><  such that 

 nbr >< . 

This implies nanrm =),,(  and nxnrm ),,(  for some nbx >< . 

Then anranrmn  )(=),,(=  and as nx  ,  xnrxnrm  )(=),,( . 

Then nn bxnrmn ><>),,(}{   and bxnrn  )(< . 

Moreover, nxnxnra ==)(  . This implies [n) is disjunctive. 

Similarly we can show that (n] is dual disjunctive. 

Hence )[]( nn d   is disjunctive. 

Since by Theorem 1.2, )[]()( nnSP d

n  , so )(SPn  is disjunctive which is (i). 
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)()( iiii  .  Suppose )(SPn  is disjunctive. 

Let })({nyRx  . If yx  , then either xyx <  or yyx < . 

Suppose xyx < . Since S is distributive, so either 

nxnyx  <  or nxnyx  <)(  

If nxnyx  < , then nnn yxx ><>><   and so   

nnn yyx >><><  . 

If nxnyx  <)( , then nnn xyx >><><  . 

Thus yx   implies either nnn xyx >><><   or  

nnn yyx >><><  . 

Without loss of generality suppose that nnn xyx >><><  . 

Since )(SPn  is disjunctive, there exists nt ><  such that nn xtn ><>}{   and 

}{=><><>< nyxt nnn   and so }{=><>< nyt nn  . 

That is ntnym =),,( . Since })({nyRx  , so ntnxm =),,(  and so 

}{=><>< ntx nn  . 

This implies }{=>< nt n , which is a contradiction. Therefore , yx = . 

Thus =})({nR , which is (iii). 

Finally, we show that )()( iiii  . Let =})({nR . 

Consider the interval ],[ bn . If ],[ bn  is not disjunctive, then there exists Sx     

with bxn <  such that ntx >  for all t with btn < . 

Choose any Sr .  Then   m(x,n,r)  =  m(x,n,(r   b)  n)=  (x  r)   n. 

Also   m(b,n,r)  =  m(b,n,(r   b)   n)=  (b  r)   n.  

 If nrnbm =),,( , then nnrbnrxn =)()(   implies nrnxm =),,( . 

Again nrnxm =),,(  implies  n  =  m(x,n,(r  b)   n) =  n  (x  [(r  b)   n]).   

This implies nnbrx =])[(   as nx  . 

Since bnbrn  )( , so by above condition nnbr =)(  .  

Thus   m(b,n,r)  =  m(b,n,(r   b)   n) 

              =  m(b,n,n) 

              =  n.  

Therefore , nrnxm =),,(  if and only if nrnbm =),,(  for any Sr . 

This implies })({nbRx  , and so bx = , which is a contradiction to our 

assumption. Hence ],[ bn  must be disjunctive. 

A dual proof of above shows that each interval ],[ na , Sa  is a dual disjunctive. 

Therefore, by Theorem 1.2, )(SPn  is disjunctive. □    

The following result is an extension of [ 9, Theorem 2.7], which is also a 

generalization of a result in [6]. 
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Recall that an n -ideal J  is dense if }{= nJ 
. Recently [1] have shown that an n -

ideal J  is both meet and join dense if and only if )(J  is dense in )(SC , that is 

=)(  J .  

 

Theorem 1.4.    Let S  be a distributive nearlattice and  Sn   be a central element, 

then the following conditions are equivalent : 

   (i)    )(SPn   is disjunctive. 

  (ii)    Each dense n- ideal J  is both join and meet-dense. 

  (iii)   For each dense n- ideal  J,  
  )(=)( JJ . 

  (iv)   For each dense n- ideal  J,  
  )(=)( JJ . 

Proof.  )()( iii  .  Suppose )(SPn  is disjunctive. 

Suppose J is a dense n-ideal. Then }{= nJ 
. 

Let jyjx  =  for all Jj ,  ( Syx , ). 

If yx  , then either xyx <  or yyx < . 

Without loss of generality, suppose xyx < . 

Then either nxnyx  <  or nxnyx  <)( . 

Since Jn , so nynx  = . So nxnyx  = . Thus nxnyx  <)( . 

Since )(SPn  is disjunctive, so by Theorem 1.2, [n) is disjunctive. 

Hence there exists b  with nxbn <  such that nbnyx =))((  . 

Then for all Jj ,   

                         n  =  n  (j  n) 
                             =  [(x  y)   n]   b  (j  n) 

                 =  b  [(x  y)   n]   (j  n) 

                 =  b  [(x  y  j)   n] 
                 =  b  [(x  j)   n] 

                 =  b  (x  n)   (j  n) 

                 =  b  (j  n) 

                 = m(b,n,j)  which shows that }{= nJb   implies nb =  which 

is a contradiction. 

Thus, yx = , and so J is join-dense. 

Similarly, we can show that J is also meet-dense. Hence (ii) holds. 

)()( iii  .  For any Sa , 
 nn aa ><><  is always a dense n-ideal. 

Since (ii) holds, so 
 nn aa ><><  is both meet and join-dense. 

Then by [ 1, Theorem 1.9 ], )><>(<  nn aa  is dense.   

                     That is,  
 )( nn aa        
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 ))()(( nn aa  

                           
  )()( nn aa  

 

Thus ).>(<=)>(<)>(< nnn aaa  
 

Taking the n-kernels on both sides we have nn aa ><><   due  to 

 [ 1, Theorem 1.4 (ii) ]. It follows that nn aa >=<>< 
. 

Then by Theorem 1.3, )(SPn  is disjunctive. Hence (i) holds. 

Since }{= nJ 
 if and only if SJ =

 and by [ 1, Theorem 1.9 ], J is both meet    

and join-dense if and only if =)(  J , so obviously, (ii), (iii) and (iv) are    

equivalent. □    

The following theorem is a generalization of [ 9, Theorem 2.8 ]. 

 

Theorem 1.5.    Let S  be a distributive nearlattice with a central element  n.  Then 
the following conditions are equivalent : 

  (i)    )(SPn   is disjunctive 

 
 (ii)    For each congruence  , 

  )(= nKer . 

  (iii)   For each n- ideal J, 
  )(=)( JJR . 

  (iv)   For each congruence  , 
  )(=)( nn KerKer . 

  (v)    For each congruence  , 
  )(=)( nn KerKer . 

  (vi)   The n- kernel of each skeletal congruence is an annihilator  n- ideal. 

Proof.  )()( iii  . Suppose (i) holds. 

Since  )( nKer , so we have 
  )( nKer . 

So it is sufficient to prove that =)(  nKer . 

Suppose yx   and ))((  nKeryx  implies  yx  

and 
 )( nKeryx . 

If yx < , then either nynx  <  or nynx  < . 

Suppose nynx  < . Since )(SPn  is disjunctive, so by Theorem 1.2, [n) is also 

disjunctive. So there exists nyan <  such that nnxa =)(  . 

Now , )(=)()(=  anyanxan  and so,  nKera . 

Since 
 )( nKeryx , so 

 )( nKernynx  

and since  nKera , so by [ 1, Theorem 1.4 ], ),,(=),,( annymannxm  , 

i.e. 

)())(())((=)())(())(( annyannyannxannx   
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 and so annxan  =))(( . 

This implies, an = , which is a contradiction. 

Therefore yx =  and so =)(  nKer . 

Thus 
  )( nKer . Hence 

  )(= nKer . 

)()( iiiii   holds since J is the n-kernel of R(J) and )(J . 

)()( iiii  . Suppose (iii) holds. Since =})({n  and since (iii) holds, 

so =})({=})({   nnR  implies that })({nR . 

Then by Theorem 1.3, we have )(SPn  is disjunctive. 

Since by [ 1, Theorem 1.4 (ii) ], 
 )(J  and )(  J  have 

J  as their n-kernels, 

so )()( ivii   is obvious. 

)()( viv   and )()( viv   are obvious. 

Finally we need to prove that )()( ivi  . 

Suppose (vi) holds. Let can < . 

Then by [ 1,Theorem 1.4 (iii) ], >,< ac  is the n-kernel of a  

skeletal congruence. Since (vi) holds, so there is an annihilator n-ideal K 

such that 
KKac =>=,< . 

As aca   implies 
 KKaca =>=,< . 

Also since ca <  implies 
 KKacc =>=,< .  

So there exists 
Ke  such that nencm ),,( . 

But nenam =),,(  implies nnea =)(  . 

That is, nnea =)(   and so ncnea =))((  . 

Also nencm ),,(  implies ncne >)(   and so 

ccnen  )(<  with ncnea =))((   

Therefore [n) is disjunctive. 

A dual proof of this gives that (n] is dual disjunctive and so by Theorem 1.2, )(SPn  

is disjunctive. □    

Recall that a nearlattice S with 0 is  semi-Boolean if it is distributive and the interval 

][0, x  is complemented for each Sx . 

The following result is an extention of [ 9, Theorem 2.9 ]. 

 
Theorem 1.6.   Let S  be  a  distributive  nearlattice  with  a  central element  n.  

Then the following conditions are equivalent : 

  (i)    )(SPn   is semi-Boolean. 

  (ii)    For each congruence  ,  )(=   nKer . 

  (iii)   For each n- ideal  J,  
  )(=)( JJ . 
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  (iv)   For each n- ideal  J,  .)(=)(   JJ  

Proof.  )()( iii  . Suppose (i) holds. 

Let   be any congruence on S. Then by [ 2, Theorem 2.6 ], )(=  nKer . 

Thus with 
 = , we see that (i) implies (ii). 

)()( iiiii   follows from [ 1, Theorem 1.4 ] and )()( iviii   is obvious. 

)()( iiv  . Suppose (iv) holds. Put 
 nn aaJ ><>=< . 

Since SJ =
,  (iv) implies =)><>(<  nn aa  

It follows that =)>(<)>(<   nn aa   

and so ).>(<=)>(<)>(< nnn aaa  
 

Now by [ 1, Theorem 1.4 ], .)>(<=><   nnn aKera  

Then, 
  )>(<)>(< nn aa  and so  

.)>(<)>(<=)>(<   nnn aaa  

Therefore,  
 )>(<=)>(< nn aa . 

But 


nn aa >=<>< , so by (iv) 

)>(<=)>(<=)>(<=)>(<   nnnn aaaa . 

Now, let .ban   Then for all ],[=>< anaj n , .=),,(=),,( jjnbmjnam  

Thus by [ 1, Theorem 1.4 ], )>(<=)>(<   nn aaba . 

Then ]>(<](=]>(<](   nn abaa  implies that  

)()()(= 1 srbrbbab    for some 
 ns arr ><,,1  . 

That is, )()(= 1 srbrbab   . 

Again, 
 ni ar ><  implies nnrranarnam iii =)()()(=),,(  ,                   

and so nra i  . Thus nrnrara  == . 

Now, put nrbp ii  )(=  and sppp 1= . Then bpn  . 

Again, nnarbarbaap s =)()()(= 1   .  

and bnbnarbrbap s ==)()(= 1   . 

Hence ],[ bn  is complemented for each Sb . 

Similarly a dual proof of above shows that ],[ ne  is also complemented 

for each ne  . 

Hence by [ 2, Corollary 1.10 ], )(SPn  is semi-Boolean. □    

For a nearlattice S, the skeleton  

                
 :)({)( SCSSC    for some  )}(SC   
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               }:)({  SC   is a complete Boolean lattice.  

The meet of a set )(}{ SSCi   is i  ; as in C(S), while the join is given by 

  )(=)(= iii  and the complement of )(SSC  is 
 . 

The fact that SC(S) is complete follows from the fact that SC(S) is precisely the set 

of closed elements associated with the closure operation
   on the 

complete lattice C(S) and SC(S) is Boolean because of Glivenko's theorem, c.f. 

Gr a tzer [ 4, Theorem 4, p.58]. 

The set )}(:{=)( SSCKerSKSC   is closed under arbitrary set-theoretic 

intersections and hence is a complete lattice. 

Also , for any Sn , )}(:{=)( SSCkerSSCK nn   is a complete lattice. 

We also denote }= ; )(:{=)(   JJSIJJSA , which is a complete Boolean 

lattice. 

The following theorems are due to [ 9 ]. In fact Cornish proved these results  for  

lattices in  [ 3, Theorem 2.4 and Theorem 2.5],  which  are extensions of the classical 

theorem of Hashimoto [ 4, Theorem 8, p.91]. 
 

Theorem 1.7.    Let S  be a distributive nearlattice with 0. Then the following 

conditions are equivalent : 
   (i)    S  is disjunctive 

  (ii)    The map  Ker   of )(SSC   onto KSC(S)  is one-to-one. 

  (iii)   The map  Ker   of )(SSC   onto KSC(S)  preserves finite joins. 

  (iv)   The map   Ker   is a lattice isomorphism of )(SSC   onto 

KSC(S)  whose inverse is the map 
 )(JJ  

 

Theorem 1.8.    Let S  be a distributive nearlattice with 0.  Then the nearlattice S  is 

semi-Boolean if and only if the map  Ker   is a lattice isomorphism of 

)(SSC   onto KSC(S)  whose inverse is the map     ).(JJ   

We conclude this paper with the following generalizations of the above theorems. 

 

Theorem 1.9.    Let S  be a distributive nearlattice with a central element n.  Then 
the following conditions are equivalent : 

  (i)    )(SPn   is disjunctive 

  (ii)    The map  nKer   of )(SSC   onto )(SSCKn   is one-to-one 

 and so is a one-to-one correspondence. 

  (iii)   The map  nKer   of )(SSC   onto )(SSCKn   preserves finite        

joins. 

  (iv)   The map  nKer   is a lattice isomorphism of SC(S)  onto 
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)(SSCKn   whose inverse is the map 
 )(JJ   for any n- ideal  J  in S. 

Proof.  Firstly, we show that )()( ivi  . Suppose (i) holds. 

That is, )(SPn  is disjunctive. 

Then by Theorem 1.5 (vi), we have 

} ,=:{=)( idealnisJJJJSSCKn 
. 

Also, by Theorem 1.5 (ii), for any )(SSC , 
  )(== nKer . 

Thus the map   nKer of SC(S) onto )(SSCKn  is one-to-one. 

Clearly this map preserves meets and it is also preserves joins since for any    

 )( , SSC , 
  )(=  and   

           
  )(=)( nn KerKer  

                     
  ])([= nKer  

                   ])()[(= nn KerKer  

                   )()(= nn KerKer  

                 )()(=   nn KerKer   

                  nn KerKer=  

  Thus,  nKer  is a lattice isomorphism. 

Also, note that, JJJKerJKer nn ==))((=))((    for any 

n-ideal )(SSCKJ n , while   ==)( nKer  for any )(SSC . 

Thus 
 )(JJ  is the inverse of  nKer . Hence (iv) holds. 

)()( iiiv   is obvious. 

)()( iiiii  .   Suppose (ii) holds, i.e.,  nKer  is one-to-one. 

Then it is a meet isomorphism of the lattice SC(S) onto the lattice )(SSCKn . It 

follows that   nKer  is a lattice isomorphism and so (iii) holds. 

Finally, we shall show that (iii) implies (i). Suppose (iii) holds. 

Then  nKer  is a lattice isomorphism of SC(S) onto )(SSCKn . Hence 

)(SSCKn  must be Boolean. It is not hard to see that )(SPn  is a join-dense 

subnearlattice of )(SSCKn . Since )(SSCKn  is Boolean, so )(SPn  is disjunctive. 

Hence (i) holds. □     

 

Theorem 1.10.    Let  S    be a  distributive  nearlattice  with a central element  n .  

Then )(SPn   is semi-Boolean if and only if the map  nKer   is a lattice 

isomorphism of )(SSC   onto )(SSCKn   whose inverse is the map )(JJ  , J  
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is an n- ideal of  S. 

Proof.   Suppose )(SPn  is semi-Boolean. Then of course )(SPn  is disjunctive and 

so by Theorem 1.9, the inverse of   nKer   is 
 )(JJ . 

Now, by Theorem 1.6, )(=)(   JJ  for any )(SSCKJ n . 

So due to Theorem 1.5, 
JJ = . 

Hence )(JJ   is the inverse of  nKer . 

Conversely, let )(JJ   is the inverse of  nKer . 

Then by Theorem 1.9, )(SPn  is disjunctive and so by Theorem 1.5, 

  JJKerJKer nn =))](([=))((  for any n-ideal J of S. 

Then by [ 1, Theorem 1.4 ], we have )(SSCKJ n . 

Also we must have, 
  )(=)))(((=)( JJKerJ n . 

Then by Theorem 1.6, )(SPn  is semi-Boolean. □    
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