Journal of Physical Sciences, Vol. 16, 2012, 31-43 ISSN: 0972-8791, www.vidyasagar.ac.in/journal Published on xxxxxxxxx [Type text]

Disjunctive Nearlattices and Semi-Boolean Algebras

Shiuly Akhter

Department of Mathematics, University of Rajshahi, Rajshahi - 6205, Bangladesh. Email: shiuly math ru@yahoo.com

Received October 19, 2012; accepted December 18, 2012

ABSTRACT

A distributive nearlattice *S* with 0 is *disjunctive* if $0 \le a < b$ implies the existence of $x \in S$ such that $x \land a = 0$ and $0 < x \le b$. A nearlattice *S* with 0 is *Semi-Boolean* if it is distributive and the interval [0, x] is complemented for each $x \in S$. In this paper, we establish the following fundamental results :

When S is a distributive nearlattice with a central element n, then $P_n(S)$ is disjunctive if and only if each dense n-ideal J is both join and meet-dense which is equivalent to the condition that the n-kernel of each skeletal congruence is an annihilator n-ideal. $P_n(S)$ is semi-Boolean if and only if for each n-ideal J, $(J^+) = (J)^*$ when n is a central element of S. When S is a distributive nearlattice with a central element n, $P_n(S)$ is semi-Boolean if and only if the map $\Theta \rightarrow Ker_n \Theta$ is a lattice isomorphism of SC(S) onto $K_nSC(S)$ whose inverse is the map $J \rightarrow \Theta(J)$, J is an n-ideal of S.

Keywords: n-Kernels of a congruence, Dense subset, Disjunctive nearlattice, ssSemi-Boolean nearlattice.

AMS Mathematics Subject classifications (2010): 06A12, 06A99, 06B10.

1. Introduction

Skeletal congruences on distributive lattices have been studied by Cornish[3]. Then Latif in [6] studied the n- Kernels of skeletal congruences on a distributive lattice. Disjunctive (sectionally semicomplemented) lattices have been studied by many authors including [3], Then [9] has extended the concept for nearlattices. On the other hand Latif in [6] has generalized the results of [3] for n-ideals in lattices. In this paper we have extended and generalized those results for nearlattices.

A nearlattice *S* is a meet semilattice with the property that any two elements possessing a common upper bound, have a supremum. Nearlattice *S* is distributive if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$ provided $y \lor z$ exists. For detailed literature on nearlattices and its congruences and ideals we refer the reader to [7], [8] and [9]. Here C(S) denotes the lattice of congruences of *S*. For any $\Theta \in C(S)$, Θ^* denotes the pseudocomplement of Θ . For a nearlattice *S*, we define the *skeleton*

$$SC(S) = \{ \Theta \in C(S) : \Theta = \Phi^* \text{ for some } \Phi \in C(S) \}$$
$$= \{ \Theta \in C(S) : \Theta = \Theta^{**} \}$$

The pseudocomplement J^* of an ideal J is the *annihilator ideal*

$$J^* = \{x \in S : x \land j = 0 \quad for \ all \quad j \in J\}.$$

The kernel of congruence Θ

$$Ker\Theta = \{x \in S : x \equiv 0\Theta\}.$$

For an ideal J of a distributive nearlattice S, we define $\Theta(J)$ by $x \equiv y\Theta(J)$ if and only if $(x] \lor J = (y] \lor J$, which is the smallest congruence of S containing J as a class.

Of course $Ker\Theta(J) = J$.

For a fixed element $n \in S$, a convex subnear lattice of S containing n is called an n-ideal. For detailed literature on n-ideals see [2].

An element *s* of a nearlattice *S* is called *standard* if for all $t, x, y \in S$,

 $t \wedge [(x \wedge y) \lor (x \wedge s)] = (t \wedge x \wedge y) \lor (t \wedge x \wedge s).$

The element s is called *neutral* if

(i) *s* is standard and

(ii) for all $x, y, z \in S$, $s \land [(x \land y) \lor (x \land z)] = (s \land x \land y) \lor (s \land x \land z)$.

An element *n* of a nearlattice *S* is called *medial* if $m(x, n, y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists in *S* for all $x, y \in S$. An element *n* in a nearlattice *S* is called *sesquimedial* if for all $x, y, z \in S$,

 $([(x \land n) \lor (y \land n)] \land [(y \land n) \lor (z \land n)]) \lor (x \land y) \lor (y \land z)$ exists in S. An element *n* of a nearlattice S is called an *upper element* if $x \lor n$ exists for all $x \in S$. Every upper element is of course a sesquimedial element. An element *n* is called a *central element* of S if it is neutral, upper and complemented in each interval containing it.

When n is a medial element, then for any n-ideal J of a distributive nearlattice S,

we define

 $J^+ = \{x \in S : m(x, n, j) = n \text{ for all } j \in J\}.$

Obviously J^+ is an *n*-ideal which we call, the annihilator *n*-ideal of J. We define

the n-kernel of a congruence Θ by $Ker_n \Theta = \{x \in S : x \equiv n\Theta\}$, which is clearly an n-ideal.

Skeletal congruences in lattices have been studied by [3]. Then [9] have extended those results for nearlattices. Recently [1] have generalized some of their results for n-ideals.

 $\Theta \in C(S)$ is called dense if $\Theta^* = \omega$, while an n-ideal J is called dense if $J^+ = \{n\}$. A non-empty subset T of a nearlattice S is called join-dense if each $z \in S$ is the join of its predecessors in T, while T is called meet-dense if each $z \in S$ is the meet of its successors in T.

A distributive nearlattice *S* with 0 is called *disjunctive* if $0 \le a < b$ implies the existence of $x \in S$ such that $x \land a = 0$ and $0 < x \le b$. A nearlattice *S* with 0 is *semi-Boolean* if it is distributive and the interval [0, x] is complemented for each $x \in S$.

An n-ideal generated by a single element a is called a principal n-ideal, denoted by $\langle a \rangle_n$. The set of principal n-ideals is denoted by $P_n(S)$. When $n \in S$ is standard and medial then for any $a \in S$

$$\langle a \rangle_n = \{ y \in S : a \land n \le y = (y \land a) \lor (y \land n) \}$$
$$= \{ y \in S : y = (y \land a) \lor (y \land n) \land (a \land n) \}$$

When *n* is an upper element, then $\langle a \rangle_n$ is the closed interval $[a \wedge n, a \vee n]$. By [7], for a medial and standard element *n*, $P_n(S)$ is a meet semilattice. Also, when *n* is neutral and sesquimedial, $P_n(S)$ is a nearlattice. Moreover, when *n* is central, then $P_n(S) \cong (n]^d \times [n]$.

In this paper, we generalize several results of [9] on disjunctive and semi-Boolean nearlattices in terms of $P_n(S)$. By [2] we know that for any n-ideal J of a distributive medial nearlattice S, R(J) denotes the largest congruence having J as its kernel, where $x \equiv yR(J)$ if and only if for each $r \in S$, $m(x,n,r) \in J$ if and only if $m(y,n,r) \in J$.

The following result is due to [9] which gives a description of disjunctive nerlattices.

Theorem 1.1. For a distributive nearlattice S with 0, the following conditions are equivalent:

- (*i*) *S* is disjunctive.
- (*ii*) For all $a \in S$, $(a] = (a]^{**}$.
- (iii) $R((0]) = \omega$.

Following result is due to [7] which will be needed for the development of this paper.

Theorem 1.2. For a neutral element n of a nearlattice S, the following conditions are equivalent :

- (i) n is central in S
- (ii) n is upper and the map $\Phi: P_n(S) \to (n]^d \times [n)$ defined by

 $\Phi(\langle a \rangle_n) = (a \land n, a \lor n)$ is an isomorphism, where $(n]^d$ represents the dual of the lattice (n].

Now we extend the above Theorem 1.1.

Theorem 1.3. Suppose S is a distributive medial nearlattice with a central element n. Then the following conditions are equivalent :

- (i) $P_n(S)$ is disjunctive
- (ii) For each $a \in S$, $\langle a \rangle_n = \langle a \rangle_n^{++}$.
- (iii) $R(\{n\}) = \omega$

Proof. $(i) \Rightarrow (ii)$. Here n is central, and so it is upper.

Suppose $P_n(S)$ is disjunctive and suppose that $\langle a \rangle_n \neq \langle a \rangle_n^{++}$ for some $a \in S$. Since $\langle a \rangle_n \subseteq \langle a \rangle_n^{++}$, so there exists $t \in \langle a \rangle_n^{++}$ but $t \notin \langle a \rangle_n = [a \land n, a \lor n]$ which implies either $a \land n \nleq t$ or $t \nleq a \lor n$. Suppose $a \land n > t$, then $t \land a \land n < a \land n$. Thus, $[a \land n, n] \subset [t \land a \land n, n]$ and so $\{n\} \subseteq \langle a \land n \rangle_n \subset \langle t \land a \land n \rangle_n$. Since $P_n(S)$ is disjunctive, so there exists $\langle b \rangle_n$ such that $\{n\} \subset \langle b \rangle_n \subseteq \langle t \land a \land n \rangle_n$ and $\langle a \land n \rangle_n \cap \langle b \rangle_n = \{n\}$. This implies $[(a \land n) \lor (b \land n), n] = \{n\}$, and so $(a \land n) \lor (b \land n) = n$.

Now,

$$\langle a \rangle_n \cap \langle b \rangle_n = [(a \land n) \lor (b \land n), (a \lor n) \land (b \lor n)]$$
$$= [n, (a \lor n) \land (b \lor n)] = \{n\} \text{ as } b \le n.$$

Hence $\langle b \rangle_n \subseteq \langle a \rangle_n^+$.

Now

Thus $\langle b \rangle_n = \{n\}$, which is a contradiction.

Therefore, $\langle a \rangle_n = \langle a \rangle_n^{++}$ for all $a \in S$, which is (ii). Again, suppose $t > (a \lor n)$. Then $(t \lor n) > (a \lor n)$ and hence $t \neq (t \land a) \lor (t \land n)$. That is, $(t \land a) \lor (t \land n) < t$ and so $(t \land a) \lor n < t \lor n$. Thus, $\{n\} \subset \langle (t \land a) \lor n \rangle_n \subset \langle t \lor n \rangle_n$ Since $P_n(S)$ is disjunctive so there exists $\langle c \rangle_n$ such that $\{n\} \subset \langle c \rangle_n \subseteq \langle t \lor n \rangle_n \text{ and } \langle c \rangle_n \cap \langle (t \land a) \lor n \rangle_n = \{n\}.$ This implies $[c \land n, c \lor n] \cap [n, (t \land a) \lor n] = \{n\}$ and so $[n, ((t \land a) \lor n) \land (c \lor n)] = \{n\}.$ Thus $((t \land a) \lor n)(c \lor n) = n$. That is, $(t \land a \land c) \lor n = n$ and so $t \land a \land c \le n$. Also, $(t \land a \land c) \lor n = n$ implies $[(t \land c) \lor n] \land [a \lor n] = n$. Hence, $\langle (t \land c) \lor n \rangle_n \subset \langle a \rangle_n^+$. Now, $\langle c \rangle_n = \langle c \rangle_n \cap \langle t \wedge n \rangle_n$ = $[c \land n, c \lor n] \land [n, t \lor n]$ $= [n, (t \land c) \lor n]$ $= \langle t \lor n \rangle_n \cap \langle (t \land c) \lor n \rangle_n$ = {n} as $\langle (t \land c) \lor n \rangle_n \subseteq \langle a \rangle_n^+$ and $t \lor n \in \langle a \rangle_n^{++}$. Thus $\langle c \rangle_n = \{n\}$, which is a contradiction. Therefore $\langle a \rangle_n = \langle a \rangle_n^{++}$ for all $a \in S$. Thus (ii) holds. $(ii) \Longrightarrow (i)$. Suppose $\langle a \rangle_n = \langle a \rangle_n^{++}$ for all $a \in S$. Now let $n \le a < b$. Then $\{n\} \subseteq \langle a \rangle_n \subset \langle b \rangle_n$ and $\langle a \rangle_n = \langle a \rangle_n^{++}$, $_n = _n^{++}$ implies $<a>_n^+ \supset _n^+$. So there exists $r \in <a>_n^+$ such that $r \notin \langle b \rangle^+$. This implies m(r, n, a) = n and $m(r, n, x) \neq n$ for some $x \in \langle b \rangle_n$. Then $n = m(r, n, a) = (r \lor n) \land a$ and as $x \ge n$, $m(r, n, x) = (r \lor n) \land x$. Then $\{n\} \subset \langle m(r, n, x) \rangle_n \subseteq \langle b \rangle_n$ and $n \langle (r \lor n) \land x \leq b$. Moreover, $a \land (r \lor n) \land x = n \land x = n$. This implies [n) is disjunctive. Similarly we can show that (n] is dual disjunctive. Hence $(n]^d \times [n]$ is disjunctive. Since by Theorem 1.2, $P_n(S) \cong (n)^d \times [n]$, so $P_n(S)$ is disjunctive which is (i).

 $(i) \Rightarrow (iii)$. Suppose $P_n(S)$ is disjunctive. Let $x \equiv yR(\{n\})$. If $x \neq y$, then either $x \land y < x$ or $x \land y < y$. Suppose $x \land y < x$. Since S is distributive, so either $x \wedge y \wedge n < x \wedge n$ or $(x \wedge y) \vee n < x \vee n$ If $x \wedge y \wedge n < x \wedge n$, then $\langle x \rangle_n \subset \langle x \rangle_n \lor \langle y \rangle_n$ and so $\langle x \rangle_n \cap \langle y \rangle_n \subset \langle y \rangle_n$. If $(x \land y) \lor n < x \lor n$, then $\langle x \rangle_n \cap \langle y \rangle_n \subset \langle x \rangle_n$. Thus $x \neq y$ implies either $\langle x \rangle_n \cap \langle y \rangle_n \subset \langle x \rangle_n$ or $\langle x \rangle_n \cap \langle y \rangle_n \subset \langle y \rangle_n$. Without loss of generality suppose that $\langle x \rangle_n \cap \langle y \rangle_n \subset \langle x \rangle_n$. Since $P_n(S)$ is disjunctive, there exists $\langle t \rangle_n$ such that $\{n\} \subset \langle t \rangle_n \subseteq \langle x \rangle_n$ and $< t >_n \cap < x >_n \cap < y >_n = \{n\}$ and so $< t >_n \cap < y >_n = \{n\}$. That is m(y,n,t) = n. Since $x \equiv yR(\{n\})$, so m(x,n,t) = nand so $< x >_{n} \cap < t >_{n} = \{n\}$. This implies $\langle t \rangle_n = \{n\}$, which is a contradiction. Therefore, x = y. Thus $R(\{n\}) = \omega$, which is (iii). Finally, we show that $(iii) \Rightarrow (i)$. Let $R(\{n\}) = \omega$. Consider the interval [n,b]. If [n,b] is not disjunctive, then there exists $x \in S$ with $n \le x < b$ such that $x \land t > n$ for all t with $n < t \le b$. Choose any $r \in S$. Then $m(x,n,r) = m(x,n,(r \land b) \lor n) = (x \land r) \lor n$. Also $m(b,n,r) = m(b,n,(r \land b) \lor n) = (b \land r) \lor n$. If m(b,n,r) = n, then $n \le (x \land r) \lor n \le (b \land r) \lor n = n$ implies m(x,n,r) = n. Again m(x, n, r) = n implies $n = m(x, n, (r \land b) \lor n) = n \lor (x \land [(r \land b) \lor n]).$ This implies $x \wedge [(r \wedge b) \vee n] = n$ as $x \ge n$. Since $n \le (r \land b) \lor n \le b$, so by above condition $(r \land b) \lor n = n$. Thus $m(b,n,r) = m(b,n,(r \land b) \lor n)$ = m(b,n,n)= n. Therefore, m(x,n,r) = n if and only if m(b,n,r) = n for any $r \in S$. This implies $x \equiv bR(\{n\})$, and so x = b, which is a contradiction to our assumption. Hence [n, b] must be disjunctive.

A dual proof of above shows that each interval [a,n], $a \in S$ is a dual disjunctive.

Therefore, by Theorem 1.2, $P_n(S)$ is disjunctive. \Box

The following result is an extension of [9, Theorem 2.7], which is also a generalization of a result in [6].

Recall that an *n*-ideal *J* is dense if $J^+ = \{n\}$. Recently [1] have shown that an *n*-ideal *J* is both meet and join dense if and only if $\Theta(J)$ is dense in C(S), that is $\Theta(J)^* = \omega$.

Theorem 1.4. Let S be a distributive nearlattice and $n \in S$ be a central element, then the following conditions are equivalent :

- (i) $P_n(S)$ is disjunctive.
- (ii) Each dense n- ideal J is both join and meet-dense.
- (iii) For each dense n- ideal J, $\Theta(J^+) = \Theta(J)^*$.
- (iv) For each dense n- ideal J, $\Theta(J^{++}) = \Theta(J)^{**}$.

Proof. $(i) \Rightarrow (ii)$. Suppose $P_n(S)$ is disjunctive.

Suppose J is a dense n-ideal. Then $J^+ = \{n\}$.

Let $x \wedge j = y \wedge j$ for all $j \in J$, $(x, y \in S)$.

If $x \neq y$, then either $x \wedge y < x$ or $x \wedge y < y$.

Without loss of generality, suppose $x \land y < x$.

Then either $x \wedge y \wedge n < x \wedge n$ or $(x \wedge y) \vee n < x \vee n$.

Since $n \in J$, so $x \wedge n = y \wedge n$. So $x \wedge y \wedge n = x \wedge n$. Thus $(x \wedge y) \lor n < x \lor n$.

Since $P_n(S)$ is disjunctive, so by Theorem 1.2, [n) is disjunctive.

Hence there exists b with $n < b \le x \lor n$ such that $((x \land y) \lor n) \land b = n$.

Then for all $j \in J$,

 $n = n \land (j \lor n)$ $= [(x \land y) \lor n] \land b \land (j \lor n)$ $= b \land [(x \land y) \lor n] \land (j \lor n)$ $= b \land [(x \land y \land j) \lor n]$ $= b \land [(x \land j) \lor n]$ $= b \land (x \lor n) \land (j \lor n)$ $= b \land (j \lor n)$ $= m(b,n,j) \text{ which shows that } b \in J^+ = \{n\} \text{ implies } b = n \text{ which}$

is a contradiction.

Thus, x = y, and so J is join-dense.

Similarly, we can show that J is also meet-dense. Hence (ii) holds.

 $(ii) \Rightarrow (i)$. For any $a \in S$, $\langle a \rangle_n \lor \langle a \rangle_n^+$ is always a dense n-ideal.

Since (ii) holds, so $\langle a \rangle_n \lor \langle a \rangle_n^+$ is both meet and join-dense.

Then by [1, Theorem 1.9], $\Theta(\langle a \rangle_n \lor \langle a \rangle_n^+)$ is dense.

That is, $\omega = \Theta(\langle a \rangle_n \lor \langle a \rangle_n^*)^*$

$$= (\Theta(\langle a \rangle_n) \vee \Theta(\langle a \rangle_n^+))^*$$
$$= \Theta(\langle a \rangle_n^*) \cap \Theta(\langle a \rangle_n^+)^*$$

Thus $\Theta(\langle a \rangle_n^+)^* \subseteq \Theta(\langle a \rangle_n)^{**} = \Theta(\langle a \rangle_n).$

Taking the n-kernels on both sides we have $\langle a \rangle_n^{++} \subseteq \langle a \rangle_n$ due to

[1, Theorem 1.4 (ii)]. It follows that $\langle a \rangle_n^{++} = \langle a \rangle_n$.

Then by Theorem 1.3, $P_n(S)$ is disjunctive. Hence (i) holds.

Since $J^+ = \{n\}$ if and only if $J^{++} = S$ and by [1, Theorem 1.9], J is both meet

and join-dense if and only if $\Theta(J)^* = \omega$, so obviously, (ii), (iii) and (iv) are

equivalent. D

The following theorem is a generalization of [9, Theorem 2.8].

Theorem 1.5. Let S be a distributive nearlattice with a central element n. Then the following conditions are equivalent :

- (i) $P_n(S)$ is disjunctive
- (ii) For each congruence Φ , $\Phi^* = \Theta(Ker_n \Phi)^*$.
- (iii) For each n- ideal J, $R(J)^* = \Theta(J)^*$.
- (iv) For each congruence Φ , $Ker_n(\Phi^*) = (Ker_n\Phi)^+$.
- (v) For each congruence Φ , $Ker_n(\Phi^{**}) = (Ker_n\Phi)^{++}$.

(vi) The n- kernel of each skeletal congruence is an annihilator n- ideal. $\mathbf{P}_{\text{res}}(\mathbf{f}_{i}, (\mathbf{i}) \rightarrow (\mathbf{i}))$. Summary (i) holds

Proof. $(i) \Rightarrow (ii)$. Suppose (i) holds.

Since $\Theta(Ker_n\Phi) \subseteq \Phi$, so we have $\Phi^* \subseteq \Theta(Ker_n\Phi)^*$.

So it is sufficient to prove that $\Phi \cap \Theta(Ker_n \Phi)^* = \omega$.

Suppose $x \le y$ and $x \equiv y(\Phi \cap \Theta(Ker_n \Phi)^*)$ implies $x \equiv y\Phi$

and $x \equiv y\Theta(Ker_n\Phi)^*$.

If x < y, then either $x \land n < y \land n$ or $x \lor n < y \lor n$.

Suppose $x \lor n < y \lor n$. Since $P_n(S)$ is disjunctive, so by Theorem 1.2, [n) is also

disjunctive. So there exists $n < a \le y \lor n$ such that $a \land (x \lor n) = n$.

Now,
$$n = a \land (x \lor n) \equiv a \land (y \lor n) = a(\Phi)$$
 and so, $a \in Ker_n \Phi$.

Since $x \equiv y\Theta(Ker_n\Phi)^*$, so $x \lor n \equiv y \lor n\Theta(Ker_n\Phi)^*$

and since $a \in Ker_n \Phi$, so by [1, Theorem 1.4], $m(x \lor n, n, a) = m(y \lor n, n, a)$, i.e.

$$((x \lor n) \land n) \lor (a \land (x \lor n)) \lor (n \land a) = ((y \lor n) \land n) \lor (a \land (y \lor n)) \lor (n \land a)$$

and so $n \lor (a \land (x \lor n)) = n \lor a$. This implies, n = a, which is a contradiction. Therefore x = y and so $\Phi \cap \Theta(Ker_n \Phi)^* = \omega$. Thus $\Theta(Ker_n\Phi)^* \subseteq \Phi^*$. Hence $\Phi^* = \Theta(Ker_n\Phi)^*$. $(ii) \Rightarrow (iii)$ holds since J is the n-kernel of R(J) and $\Theta(J)$. $(iii) \Rightarrow (i)$. Suppose (iii) holds. Since $\Theta(\{n\}) = \omega$ and since (iii) holds, so $R(\{n\})^* = \Theta(\{n\})^* = \iota$ implies that $R(\{n\})^{**} = \omega$. Then by Theorem 1.3, we have $P_{\mu}(S)$ is disjunctive. Since by [1, Theorem 1.4 (ii)], $\Theta(J)^*$ and $\Theta(J^+)$ have J^+ as their n-kernels, so $(ii) \Rightarrow (iv)$ is obvious. $(iv) \Rightarrow (v)$ and $(v) \Rightarrow (vi)$ are obvious. Finally we need to prove that $(vi) \Rightarrow (i)$. Suppose (vi) holds. Let $n \le a < c$. Then by [1,Theorem 1.4 (iii)], $\langle c, a \rangle$ is the n-kernel of a skeletal congruence. Since (vi) holds, so there is an annihilator n-ideal K such that $\langle c, a \rangle = K = K^{++}$. As $a \wedge c \leq a$ implies $a \in \langle c, a \rangle = K = K^{++}$. Also since a < c implies $c \notin c, a \ge K = K^{++}$. So there exists $e \in K^+$ such that $m(c, n, e) \neq n$. But m(a, n, e) = n implies $(a \land e) \lor n = n$. That is, $a \land (e \lor n) = n$ and so $a \land ((e \lor n) \land c) = n$. Also $m(c, n, e) \neq n$ implies $(e \lor n) \land c > n$ and so $n < (e \lor n) \land c \le c$ with $a \land ((e \lor n) \land c) = n$ Therefore [n] is disjunctive. A dual proof of this gives that (n] is dual disjunctive and so by Theorem 1.2, $P_n(S)$ is disjunctive.

Recall that a nearlattice S with 0 is *semi-Boolean* if it is distributive and the interval [0, x] is complemented for each $x \in S$.

The following result is an extention of [9, Theorem 2.9].

Theorem 1.6. Let S be a distributive nearlattice with a central element n. Then the following conditions are equivalent :

- (i) $P_n(S)$ is semi-Boolean.
- (ii) For each congruence Φ , $\Phi^* = \Theta(Ker_n \Phi^*)$.
- (iii) For each n-ideal J, $\Theta(J^+) = \Theta(J)^*$.

(iv) For each n- ideal J, $\Theta(J^{++}) = \Theta(J)^{**}$. **Proof.** $(i) \Rightarrow (ii)$. Suppose (i) holds. Let Ψ be any congruence on S. Then by [2, Theorem 2.6], $\Psi = \Theta(Ker_n \Psi)$. Thus with $\Psi = \Phi^*$, we see that (i) implies (ii). $(ii) \Rightarrow (iii)$ follows from [1, Theorem 1.4] and $(iii) \Rightarrow (iv)$ is obvious. $(iv) \Rightarrow (i)$. Suppose (iv) holds. Put $J = \langle a \rangle_n \lor \langle a \rangle_n^+$. Since $J^{++} = S$, (iv) implies $\Theta(\langle a \rangle_n \lor \langle a \rangle_n)^{**} = \iota$ It follows that $\Theta(\langle a \rangle_n)^* \cap \Theta(\langle a \rangle_n^+)^* = \omega$ and so $\Theta(\langle a \rangle_{n}^{+})^{*} \subset \Theta(\langle a \rangle_{n})^{**} = \Theta(\langle a \rangle_{n}).$ Now by [1, Theorem 1.4], $\langle a \rangle_{n}^{+} = Ker_{n}\Theta(\langle a \rangle_{n})^{*}$. Then, $\Theta(\langle a \rangle_n^+) \subseteq \Theta(\langle a \rangle_n)^*$ and so $\Theta(\langle a \rangle_n) = \Theta(\langle a \rangle_n)^{**} \subseteq \Theta(\langle a \rangle_n^+)^*.$ Therefore, $\Theta(\langle a \rangle_n) = \Theta(\langle a \rangle_n^+)^*$. But $\langle a \rangle_{n}^{+} = \langle a \rangle_{n}^{+++}$, so by (iv) $\Theta(\langle a \rangle_n)^* = \Theta(\langle a \rangle_n^+)^{**} = \Theta(\langle a \rangle_n^{+++}) = \Theta(\langle a \rangle_n^+).$ Now, let $n \le a \le b$. Then for all $j \in \langle a \rangle_n = [n,a]$, m(a,n,j) = m(b,n,j) = j. Thus by [1, Theorem 1.4], $a \equiv b\Theta(\langle a \rangle_n)^* = \Theta(\langle a \rangle_n^+)$. Then $(a] \lor (\langle a \rangle_{n}^{+}] = (b] \lor (\langle a \rangle_{n}^{+}]$ implies that $b = (a \land b) \lor (b \land r_1) \lor \cdots \lor (b \land r_s)$ for some $r_1, \cdots, r_s \in \langle a \rangle_n^+$. That is, $b = a \lor (b \land r_1) \lor \cdots \lor (b \land r_s)$. Again, $r_i \in \langle a \rangle_n^+$ implies $m(a, n, r_i) = (a \land n) \lor (a \land r_i) \lor (r_i \land n) = n$, and so $a \wedge r_i \leq n$. Thus $a \wedge r = a \wedge r \wedge n = r \wedge n$. Now, put $p_i = (b \wedge r_i) \vee n$ and $p = p_1 \vee \cdots \vee p_s$. Then $n \leq p \leq b$. Again, $p \wedge a = (a \wedge b \wedge r_1) \vee \cdots \vee (a \wedge b \wedge r_s) \vee (a \wedge n) = n$. and $p \lor a = (b \land r_1) \lor \cdots \lor (b \land r_c) \lor a \lor n = b \lor n = b$. Hence [n, b] is complemented for each $b \in S$. Similarly a dual proof of above shows that [e, n] is also complemented for each $e \leq n$. Hence by [2, Corollary 1.10], $P_n(S)$ is semi-Boolean. For a nearlattice S, the skeleton $SC(S) = \{ \Theta \in C(S) : \Theta = \Phi^* \text{ for some } \Phi \in C(S) \}$

40

 $= \{ \Theta \in C(S) : \Theta = \Theta^{**} \}$ is a complete Boolean lattice.

The meet of a set $\{\Theta_i\} \subseteq SC(S)$ is $\cap \Theta_i$; as in C(S), while the join is given by

 $\vee \Theta_i = (\vee \Theta_i)^{**} = (\cap \Theta_i^*)^*$ and the complement of $\Theta \in SC(S)$ is Θ^* .

The fact that SC(S) is complete follows from the fact that SC(S) is precisely the set of closed elements associated with the closure operation $\Theta \rightarrow \Theta^{**}$ on the complete lattice C(S) and SC(S) is Boolean because of Glivenko's theorem, c.f. Grätzer [4, Theorem 4, p.58].

The set $KSC(S) = \{Ker\Theta : \Theta \in SC(S)\}$ is closed under arbitrary set-theoretic intersections and hence is a complete lattice.

Also, for any $n \in S$, $K_n SC(S) = \{ker_n \Theta : \Theta \in SC(S)\}$ is a complete lattice.

We also denote $A(S) = \{J : J \in I(S); J = J^{**}\}$, which is a complete Boolean lattice.

The following theorems are due to [9]. In fact Cornish proved these results for lattices in [3, Theorem 2.4 and Theorem 2.5], which are extensions of the classical theorem of Hashimoto [4, Theorem 8, p.91].

Theorem 1.7. Let S be a distributive nearlattice with 0. Then the following conditions are equivalent :

- (i) S is disjunctive
- (ii) The map $\Theta \rightarrow Ker\Theta$ of SC(S) onto KSC(S) is one-to-one.
- (iii) The map $\Theta \rightarrow Ker\Theta$ of SC(S) onto KSC(S) preserves finite joins.
- (iv) The map $\Theta \rightarrow Ker\Theta$ is a lattice isomorphism of SC(S) onto

KSC(S) whose inverse is the map $J \to \Theta(J)^{**}$

Theorem 1.8. Let S be a distributive nearlattice with 0. Then the nearlattice S is semi-Boolean if and only if the map $\Theta \rightarrow Ker\Theta$ is a lattice isomorphism of SC(S) onto KSC(S) whose inverse is the map $J \rightarrow \Theta(J)$.

We conclude this paper with the following generalizations of the above theorems.

Theorem 1.9. Let S be a distributive nearlattice with a central element n. Then the following conditions are equivalent :

- (i) $P_n(S)$ is disjunctive
- (ii) The map $\Theta \to Ker_n \Theta$ of SC(S) onto $K_nSC(S)$ is one-to-one and so is a one-to-one correspondence.

(iii) The map $\Theta \to Ker_n \Theta$ of SC(S) onto $K_n SC(S)$ preserves finite joins.

(iv) The map $\Theta \to Ker_n \Theta$ is a lattice isomorphism of SC(S) onto

 $K_n SC(S)$ whose inverse is the map $J \to \Theta(J)^{**}$ for any n-ideal J in S. **Proof.** Firstly, we show that $(i) \Rightarrow (iv)$. Suppose (i) holds. That is, $P_n(S)$ is disjunctive. Then by Theorem 1.5 (vi), we have $K_n SC(S) = \{J : J = J^{++}, J \text{ is } n - ideal\}.$ Also, by Theorem 1.5 (ii), for any $\Phi \in SC(S)$, $\Phi = \Phi^{**} = \Theta(Ker_n \Phi)^{**}$. Thus the map $\Theta \to Ker_n \Theta$ of SC(S) onto $K_n SC(S)$ is one-to-one. Clearly this map preserves meets and it is also preserves joins since for any Θ , $\Phi \in SC(S)$, $\Theta \lor \Phi = (\Theta^* \cap \Phi^*)^*$ and $Ker_n(\Theta \lor \Phi) = Ker_n(\Theta^* \cap \Phi^*)^*$

$$= [Ker_n(\Theta^* \cap \Phi^*)]^+$$

= $[(Ker_n\Theta)^+ \cap (Ker_n\Phi)^+]^+$
= $(Ker_n\Theta)^{++} \vee (Ker_n\Phi)^{++}$
= $(Ker_n\Theta^{**}) \vee (Ker_n\Phi^{**})$
= $Ker_n\Theta \vee Ker_n\Phi$

Thus, $\Theta \to Ker_n \Theta$ is a lattice isomorphism.

Also, note that, $Ker_n(\Theta(J)^{**}) = (Ker_n\Theta(J))^{++} = J^{++} = J$ for any n-ideal $J \in K_nSC(S)$, while $\Theta(Ker_n\Phi)^{**} = \Phi^{**} = \Phi$ for any $\Phi \in SC(S)$. Thus $J \to \Theta(J)^{**}$ is the inverse of $\Theta \to Ker_n\Theta$. Hence (iv) holds.

 $(iv) \Rightarrow (ii)$ is obvious.

 $(ii) \Rightarrow (iii)$. Suppose (ii) holds, i.e., $\Theta \rightarrow Ker_n \Theta$ is one-to-one.

Then it is a meet isomorphism of the lattice SC(S) onto the lattice $K_nSC(S)$. It follows that $\Theta \to Ker_n\Theta$ is a lattice isomorphism and so (iii) holds. Finally, we shall show that (iii) implies (i). Suppose (iii) holds. Then $\Theta \to Ker_n\Theta$ is a lattice isomorphism of SC(S) onto $K_nSC(S)$. Hence

 $K_nSC(S)$ must be Boolean. It is not hard to see that $P_n(S)$ is a join-dense subnearlattice of $K_nSC(S)$. Since $K_nSC(S)$ is Boolean, so $P_n(S)$ is disjunctive. Hence (i) holds. \Box

Theorem 1.10. Let *S* be a distributive nearlattice with a central element *n*. Then $P_n(S)$ is semi-Boolean if and only if the map $\Theta \to Ker_n\Theta$ is a lattice isomorphism of SC(S) onto $K_nSC(S)$ whose inverse is the map $J \to \Theta(J)$, J

is an n- ideal of S.

Proof. Suppose $P_n(S)$ is semi-Boolean. Then of course $P_n(S)$ is disjunctive and so by Theorem 1.9, the inverse of $\Theta \to Ker_n\Theta$ is $J \to \Theta(J)^{**}$. Now, by Theorem 1.6, $\Theta(J)^{**} = \Theta(J^{++})$ for any $J \in K_nSC(S)$. So due to Theorem 1.5, $J = J^{++}$. Hence $J \to \Theta(J)$ is the inverse of $\Theta \to Ker_n\Theta$. Conversely, let $J \to \Theta(J)$ is the inverse of $\Theta \to Ker_n\Theta$. Then by Theorem 1.9, $P_n(S)$ is disjunctive and so by Theorem 1.5, $Ker_n(\Theta(J)^{**}) = [Ker_n(\Theta(J))]^{++} = J^{++}$ for any n-ideal J of S. Then by [1, Theorem 1.4], we have $J^{++} \in K_nSC(S)$. Also we must have, $\Theta(J^{++}) = \Theta(Ker_n(\Theta(J))^{**}) = \Theta(J)^{**}$. Then by Theorem 1.6, $P_n(S)$ is semi-Boolean. □

REFERENCES

- 1.S. Akhter and M. A. Latif, Skeletal congruence on a distributive nearlattice, *Jahangirnagar University Journal of Science*, 27 (2004) 325-335.
- 2.S. Akhter and A. S. A. Noor, n- Ideals of a medial nearlattice, *Ganit J. Bangladesh Math. Soc.*, 24 (2005) 35-42.
- 3.W. H. Cornish, The Kernels of skeletal congruences on a distributive lattice, *Math. Nachr.*, 84 (1978) 219-228.
- 4.W. H. Cornish and R. C. Hickman, Weakly distributive semilattices, Acta. Math. Acad. Sci. Hunger, 32 (1978) 5-16.
- 5.G. Grätzer, *Lattice theory. First concepts and distributive lattice*, Freeman, San Francisco, 1971.
- 6.M. A. Latif, n- ideals of a lattice, 1997, Ph.D. Thesis, Rajshahi University, Rajshahi, 1997.
- 7.A. S. A. Noor and M. Golam Hossain, Principal n-ideals of nearlattics, Rajshahi University Studies Part-B, Journal of Science, 25 (1997) 187-192.
- 8.A. S. A. Noor and M. B. Rahman, Congruence relations on a distributive nearlattce, *Rajshahi University Studies Part-B, Journal of Science*, 23-24 (1995-1996) 195- 202.
- 9.A. S. A. Noor and M. B. Rahman, Sectionally semicomplemented distributive nearlattices, *SEA Bull. Math.*, 26 (2002) 603-609.