Journal of Physical Sciences, Vol. 16, 2012, 1-7 ISSN: 0972-8791, www.vidyasagar.ac.in/journal Published on 31 December 2012

α -Ideals in a Distributive Nearlattice

¹A. S. A Noor, ²M. Ayub Ali and ³A.K. M. S. Islam

¹Department of ECE East West University, Dhaka, Bangladesh E-mail: <u>noor@ewubd.edu</u> ²Department of Mathematics Jagannath University, Dhaka, Bangladesh.

Email: ayub_ju@yahoo.com

³Department of Mathematics Edward College, Pabna Bangladesh

Received April 28, 2012; accepted October 30, 2012

ABSTRACT

In this paper, the authors give the concept of α -ideals in a distributive nearlattice. They provide a number of characterizations of α -ideals in a nearlattice. They prove that a nearlattice S with 0 is disjunctive if and only if its every ideal is an α -ideal. They also show that S is sectionally quasi-complemented if and only if each prime α -ideal is a minimal prime ideal. Finally S is generalized Stone if and only if each prime ideal contains a unique prime α -ideal.

Keywords: α -ideal, Annulets, Disjunctive nearlattice, Quasi-complemented nearlattice, Generalized Stone nearlattice.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

W. H. Cornish in [3] has studied the α -ideals in a lattice L with 0. On the other hand, Bigard [2] has studied α -ideals in the context of lattice ordered groups. In this paper we study the α -ideals of nearlattices.

In a lattice L with 0, set of all ideals of the form $(x]^*$ can be made into a lattice $A_0(L)$. Where $(x]^* = \{y \in L/y \land x = 0\}$. By [3] $(x]^*$ is called an annulet of L and $A_0(L)$ denotes the lattice of annulets of L. For an ideal J in L, [3] has defined $\alpha(J) = \{(x]^* : x \in J\}$ and for a filter F in $A_0(L)$,

A. S. A Noor, M. Ayub Ali and A.K. M. S. Islam

 $\alpha^{\leftarrow}(F) = \{x \in L : (x]^* \in F\}$. It is easy to see that $\alpha(J)$ is a filter in $A_0(L)$ and $\alpha^{\leftarrow}(F)$ is an ideal in L. An ideal J in L is called an α -ideal if $\alpha^{\leftarrow}\alpha(J) = J$.

By a *near lattice*, we mean a meet semilattice with the property that any two elements possessing a common upper bound have a supremum. A nearlattice S is called a *distributive nearlattice* if for all $x, y, z \in S, x \land (y \lor z) = (x \land y) \lor (x \land z)$, provided $y \lor z$ exists. A nonempty subset I of a nearlattice S is called an *ideal* if

- i) For $x, y \in I$, $x \lor y \in I$, provided $x \lor y$ exists, and
- ii) For $x \in I$, $t \le x$ ($t \in S$) implies $t \in I$.

An ideal *P* of a nearlattice *S* is called a prime ideal if for $x, y \in S, x \land y \in P$ implies either $x \in P$ or $y \in P$.

A non empty subset F of S is called a filter if

i) for all $x, y \in F$, $x \land y \in F$, and

ii) $t \in S, t \ge x$ and $x \in F$ imply $t \in F$.

For a distributive nearlattice S with 0, I(S) denotes the set of all ideals, which is a distributive lattice and also pseudocomplemented.

Recently [5] have studied the annulets in a nearlattice. In this paper, we study the α -ideals in a nearlattice and generalize several results of [3].

2. α -ideals

Proposition 2.1. Let S be a distributive near lattice with 0, then the following hold:

(i) For an ideal I in S, $\alpha(I) = \{(x]^* | x \in I\}$ is a filter in $A_0(S)$.

(ii) For a filter F in $A_0(S)$, $\alpha^{\leftarrow}(F) = \{x \in S \mid (x] \in F\}$ is an ideal in S

(iii) If I_1, I_2 are ideals in S then $I_1 \subseteq I_2$ implies $\alpha(I_1) \subseteq \alpha(I_2)$; and if F_1, F_2 are filters in $A_0(S)$ then $F_1 \subseteq F_2$ implies that $\alpha^{\leftarrow}(F_1) \subseteq \alpha^{\leftarrow}(F_2)$.

(iv) The map $I \to \alpha^{\leftarrow} \alpha(I) = \{\alpha^{\leftarrow}(\alpha(I))\}$ is a closure operation on the lattice of ideals, that is,

Proof. (i). By [5, Prop. 2.1], $A_0(S)$ is a join semilattice with the lower bound property. Let $(x]^*, (y]^* \in \alpha(I)$, and $(t]^* \in A_0(S)$, where $x, y \in I, t \in S$. Then $((t]^* \lor (x]^*) \land ((t]^* \lor (y]^*) = (t \land x]^* \land (t \land y]^* = ((t \land x) \lor (t \land y)]^* \in \alpha(I)$, as

 $(t \wedge x) \vee (t \wedge y) \in I$. Also, if $(x]^* \in \alpha(I)$ and $(t]^* \in A_0(S)$ with $(x]^* \subseteq (t]^*$, then $(t]^* = ((t]^* \vee (x]^*) = (t \wedge x]^* \in \alpha(I)$ so $\alpha(I)$ is a filter in $A_0(S)$. α -Ideals in a Distributive Nearlattice

(ii). Let $x, y \in \alpha^{\leftarrow}(F)$ and $t \in S$, then $(x]^*, (y]^* \in F$, and $(t]^* \in A_0(S)$. Since F is a filter of $A_0(S)$, so $((t]^* \vee (x]^*) \wedge ((t]^* \vee (y]^* \in F$ implies

that $((t \land x) \lor (t \land y)]^* \in F$ implies that $(t \land x) \lor (t \land y) \in \alpha^{\leftarrow}(F)$.

Also, if $x \in \alpha^{\leftarrow}(F)$ and $t \in S$ with $t \leq x$, then $(t]^* \supseteq (x]^*$ and $(x]^* \in F$ implies that $(t]^* \in F$. So $t \in \alpha^{\leftarrow}(F)$. Hence $\alpha^{\leftarrow}(F)$ is an ideal in S. (iii). Let $(x]^* \in \alpha(I_1)$, then $x \in I_1 \subseteq I_2$ implies that $(x]^* \in \alpha(I_2)$ implies that $\alpha(I_1) \subseteq \alpha(I_2)$. Let $x \in \alpha^{\leftarrow}(F_1)$, then $(x]^* \in F_1 \subseteq F_2$ implies that $x \in \alpha^{\leftarrow}(F_2)$ implies that $\alpha(F_1) \subseteq \alpha(F_2)$.

(iv) is trivial. \Box

In a join semilattice S_1 with the lower bound property (i. e. S_1 is a dual nearlattice) a non-empty subset F of S_1 is called a *filter* if

(i) For any $x, y \in F$, $x \land y \in F$ if $x, y \in F$, and $x \land y$ exists and

(ii) $x \in F$ and $y \ge x$ ($y \in S_1$) implies that $y \in F$.

Observe that this definition is dual to the definition of an ideal in a nearlattice. Now we give an equivalent definition of a filter in a dual nearlattice which is very easy to prove. This will be needed for further development of this section.

Theorem 2.2. In a dual nearlattice S_1 a non-empty subset F of S_1 is a filter if and only if

(i) For $f \in F$ and $x \ge f$ ($x \in S_1$) implies $x \in F$ and

(ii) For any $f_1, f_2 \in F$ and $x \in S_1, (x \lor f_1) \land (x \lor f_2) \in F$. \Box

An ideal *I* of a nearlattice *S* is called an α -ideal if $\alpha^{\leftarrow} \alpha(I) = I$. That is, α -ideals are simply the closed elements with respect to the closure operation of the Proposition 2.1.

Proposition 2.3. The α -ideals of a nearlattice S with 0 form a complete distributive lattice isomorphic to the lattice of filters, ordered by set inclusion in $A_0(S)$.

Proof. Let $\{I_i\}$ be any class of α -ideals of S. Then $\alpha^{\leftarrow} \alpha(I_i) = I_i$ for all i. By Proposition 2.1 (iv), $\cap I_i \subseteq \alpha^{\leftarrow} \alpha(\cap I_i)$. Again $\alpha^{\leftarrow} \alpha(\cap I_i) \subseteq \alpha^{\leftarrow} \alpha(I_i) = I_i$ for all i implies that $\alpha^{\leftarrow} \alpha(\cap I_i) \subseteq \cap I_i$, and so $\alpha^{\leftarrow} \alpha(\cap I_i) = \cap I_i$. Thus $\cap I_i$ is an α -ideal. Trivially, lattice of α -ideals is distributive. Hence α -ideals form a complete distributive lattice. For an α -ideal I, $\alpha^{\leftarrow} \alpha(I) = I$. Also, it is easy to see that for any filter F of $A_0(S)$, $\alpha^{\leftarrow} \alpha(F) = F$. Moreover, by Proposition 2.1(iii), A. S. A Noor, M. Ayub Ali and A.K. M. S. Islam

both α and α^{\leftarrow} are isotone. Hence the lattice of α -ideals of S is isomorphic to the lattice of filters of $A_0(S)$. \Box

Corollary 2.4. Let *S* be a distributive lattice with 0. Then the set of prime α -ideals of *S* are isomorphic to the set of prime filters of $A_0(S)$. \Box

Now we give a characterization of α -ideals of a nearlattice which generalizes [3, Proposition 3.3].

Proposition 2.5. For an ideal I in a distributive nearlattice S with 0 the following conditions are equivalent:

(i) I is an α -ideal.

(ii) For $x, y \in S$, $(x]^* = (y]^*$ and $x \in I$ implies $y \in I$.

(iii) $I = \bigcup_{x \in I} (x]^*$ (where $\bigcup =$ set theoretic union).

Proof. (i) implies (ii). Suppose *I* is an α -ideal, then $\alpha \stackrel{\leftarrow}{\alpha}(I) = I$. Let $x, y \in S$, $(x]^* = (y]^*$ and $x \in I$. So, $(x]^* \in \alpha(I)$ implies that $(y]^* \in \alpha(I)$ implies that $y \in \alpha \stackrel{\leftarrow}{\alpha}(I) = I$.

(ii) implies (i). Let I be an ideal of $S \cdot I \subseteq \alpha^{\leftarrow} \alpha(I)$ is always true. Suppose $x \in \alpha^{\leftarrow} \alpha(I)$ then $(x]^* \in \alpha(I)$ implies that $(x]^* = (y]^*$ for some $y \in I$. So by (ii) $x \in I$ implies that $\alpha^{\leftarrow} \alpha(I) \subseteq I$ implies that $\alpha^{\leftarrow} \alpha(I) = I$.

(ii) implies (iii). Clearly $I \subseteq \bigcup_{x \in I} (x]^{**}$. If $x \in I$ and $y \in (x]^{**}$ then $(x]^* \subseteq (y]^*$ implies that $(y]^* = (x]^* \lor (y]^* = (x \land y]^*$. Then $x \land y \in I$ implies that $y \in I$. Thus $\bigcup_{x \in I} (x]^{**} \subseteq I$. So $I = \bigcup_{x \in I} (x]^{**}$.

(iii) implies (ii). If $x, y \in S$, $(x]^* = (y]^*$ and $x \in I$, then $(x]^{**} = (y]^{**}$ implies that $y \in (x]^{**} \subset I$ implies that $y \in I$. This completes the proof. \Box

A distributive nearlattice *S* with 0 is called *disjunctive* if $0 \le x < b$ implies there is an element $x \in S$ such that $x \land a = 0$ where $0 < x \le b$.

By [1] we know that a nearlattice S with 0 is disjunctive if and only if $(x]^* = (y]^*$ implies x = y for some $x, y \in S$.

Proposition 2.6. In a distributive nearlattice S with 0 the following conditions are equivalent:

(i) Each ideal is an α -ideal.

(ii) Each prime ideal is an α -ideal.

(iii) *S* is disjunctive.

Proof. (i) implies (ii). Suppose *P* is a prime ideal of *S*, then by (i) *P* is an α -ideal, that is, $\alpha^{\leftarrow}\alpha(P) = P$. Let *I* be any ideal of *S* then we have $I = \bigcap(P/P \supseteq I)$ implies $\alpha^{\leftarrow}\alpha(I) = \alpha^{\leftarrow}\alpha(\bigcap(P/P \supseteq I))$

 α -Ideals in a Distributive Nearlattice

 $= \cap (\alpha^{\leftarrow} \alpha(P) / P \supseteq I) = \cap (P / P \supseteq I) = I$ implies that $\alpha^{\leftarrow} \alpha(I) = I$. So *I* is an α -ideal.

(ii) implies (i) is trivial.

(i) implies (iii). For any $x, y \in S$, let $(x]^* = (y]^*$. Since (x] is an α -ideal, so by definition of α -ideal, $y \in (x]$. Therefore, $y \leq x$. Similarly $x \leq y$, and so x = y. Hence *S* is disjunctive. (iii) implies (i). Suppose *I* is any ideal of *S*. By 2.1, $I \subseteq \alpha^{\leftarrow} \alpha(I)$. For the reverse inclusion, let $x \in \alpha^{\leftarrow} \alpha(I)$. Then by definition $(x]^* \in \alpha(I)$, and so $(x]^* = (y]^*$ for some $y \in I$. This implies x = y, as *S* disjunctive. So $x \in I$, and hence $\alpha^{\leftarrow} \alpha(I) = I$ Therefore, *I* is an α -ideal of *S*. \Box

Proposition 2.3 implies that there is an order isomorphism between the prime α -ideals of S and the prime filters of $A_0(S)$. It is not hard to show that each α -ideal is an intersection of prime α -ideals.

Following theorem is a generalization of [3, Theorem 3.6]. We need the following lemma.

Lemma 2.7. A distributive near lattice S with 0 is relatively complemented if and only if every prime filter is an ultra filter (Proper and maximal).

Proof. By [4, Theorem 2.11] *S* is relatively complemented if and only if its prime ideals are unordered. Thus the result follows. \Box

A prime ideal P of a nearlattice S is called a *minimal prime ideal* if it does not properly contain any other prime ideal.

By [6] we know that a distributive nearlattice S with 0 is called a *normal nearlattice* if every prime ideal of S contains a unique minimal prime ideal.

A distributive pseudocomplemented lattice L is called a *Stone lattice* if for each $x \in L$, $x^* \lor x^{**} = 1$. The concept of Stone lattice is not possible in a general nearlattice with 0. We can talk about generalized Stone nearlattices. A distributive nearlattice S with 0, is called a generalized Stone nearlattice if interval [0, x] for each $x \in S$ is a Stone lattice. Moreover, S is called generalized Stone if $(x]^* \lor (x]^{**} = S$ for each $x \in S$. Of course, every generalized Stone nearlattice is normal.

A distributive nearlattice S with 0 is called quasi-complemented if for each $x \in S$, there exists $x' \in S$ such that $x \wedge x' = 0$ and $((x]^* \vee (x']^*)^* = (0]$. S is called sectionally quasi-complemented if each interval [0, x], $x \in S$ is quasicomplemented.

Theorem 2.8. Let S be a distributive near lattice with 0. Then the following conditions are equivalent:

(i) *S* is sectionally quasi-complemented.

(ii) Each prime α -ideal is a minimal prime ideal.

(iii) Each α -ideal is an intersection of minimal prime ideals.

Moreover, the above conditions are equivalent to S being quasi-complemented if and only if there is an element $d \in S$ such that $(d]^* = (0]^*$.

Proof. (i) implies (ii). Suppose *S* is sectionally quasi-complemented. Then by [5, Theorem 2.7], $A_0(S)$ is relatively complemented. Hence its every prime filter is an ultra filter. Then by Corollary 2.4, each prime α -ideal is a minimal prime ideal.

(ii) implies (iii). It is not hard to show that each ideal of S is an intersection of prime α -ideals. This shows (ii) implies (iii).

(ii) implies (i). Suppose (ii) holds. Then by Corollary 2.4, each prime filter of $A_0(S)$ is maximal. Then by Lemma 2.7, $A_0(S)$ is relatively complemented, and so by [5, Proposition 2.7], S is sectionally quasi-complemented. \Box

We conclude the paper with the following result which is a generalization of [3, Theorem 3.7].

Theorem 2.9. A near lattice S with 0 is a generalized Stone near lattice if and only if each prime ideal contains a unique prime α -ideal.

Proof. Since minimal prime ideals are α -ideals, so by the given condition every prime ideal contains a unique minimal prime ideal. Hence *S* is normal. Also, by the given condition each prime α -ideal contains a unique prime α -ideal. That is each prime α -ideal contains no other prime α -ideals than itself. Since each minimal prime ideal is also prime α -ideal, so by the condition, each prime α -ideal is itself a minimal prime ideal. Hence by Theorem 2.8, *S* is a sectionally quasi-complemented. Therefore, by [6, Theorem 2.3], *S* is generalized Stone.

Conversely, if *S* is generalized Stone then by [6, Theorem 1.6], *S* is normal. So each prime ideal contains a unique minimal prime ideal. Thus the result follows as each minimal prime ideal is a prime α -ideal. \Box

REFERENCES

- 1. M. B. Rahman, A study on distributive nearlattices, Ph. D Thesis, Rajshahi University, Bangladesh (1994).
- 2. A. Biggard, Sur les z-sous-groupes d'ungroupe reticule, C. R. Acad. Se. Paris. Sirie A 266 (1968) 261-262.
- 3. W. H. Cornish, Annulets and α -ideals, in a distributive lattice, J. Austral. Math. Soc., 15(1) (1973) 70-77.
- 4. A. S. A. Noor and M. B. Rahman, Separation properties in nearlattices, The Rajshahi University studies, 22 (1984)
- 5. A. S. A. Noor, M. Ayub Ali and A. K. M. S. Islam, Annulets in a distributive nearlattice, Submitted to News Bull. Cal. Math.Soc.
- 6. A. S. A. Noor and A. K. M. S. Islam, Generalized Stone nearlattices, Jahangirnagar University Journal of Science, 33(1) (2010) 105-111.

 α -Ideals in a Distributive Nearlattice