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ABSTRACT 
 
The present paper deals with Para Sasakian manifolds with m-projective  curvature  
tensor.  
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1. Introduction 
Sat o  [6, 7] introduced the notion of an almost para contactstructure, either P-

Sasakian or SP-Sasakian, and gave a lot of very interesting results about such 
manifolds. In [3] Bhagwat Prasad define and studied a tensor field on Riemannian 

manifold of dimension n , called the pseudo projective curvature tensor which in a 

particular case becomes a projective curvature tensor. 

In this paper, we investigate the properties of the P-Sasakian manifold equipped with 

m-projective curvature tensor. An n -dimensional P-Sasakian manifold is a said to 

be m-projectively flat if
 

,0P  where P  is the m-projective curvature tensor. 

We show that m-projectively flat Para-Sasakian manifold is an Einstein manifold. 

Also we prove that an n -dimensional m-projectively flat P-Sasakian manifold is 

locally isometric with the Hyperbolic )1(nH .  

Next, we investigate  -m-projectively flat P-Sasakian manifold. A. Yildiz and M. 

Turan [2] studied the same condition on  -Sasakian manifold.We prove that  -m-

projectively flat P-Sasalian manifold is an  -Einstein manifold. Then we study P-

Sasakian manifold in with 0).,(
~

PXC  , wereC
~

is a concircular curvature tensor. 
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In this case, we show that either manifold has scaler curvature )1(  nnr or 

manifold is locally isometric with the Hyperbolic )1(nH .  

Finally, we study an n-dimensional P-Sasakian manifold satisfying 0).,( PYXR  

and we prove that such manifold is locally isometric with the Hyperbolic )1(nH . 
 

2. Preliminaries 

Let M be an n -dimensional contact manifold with contact form  , i.e, 

0)(  nd . It is well known that a contact manifold admits a vector field  , 

called the characteristic vector field, such that 1)(   and 1)(  for every  

).(MX 
 
Moreover, M admits a Riemannian metric g and a tensor field  of 

type (1,1) such that [6, 9] 

,2   I                                                                                                     (2.1)       

),(),( XXg                                                                                                     (2.2)       

).,(),( YXdYXg                                                                                           (2.3)                                            

We then say that ),,,( g  is a contact metric structure. A contact metric 

manifold is said to be a Sasakian if 

,)(),()( XYYXgYX                                                                             (2.4)  

In which case  

,)()(),(, YXXYYXRXX                                                  (2.5) 

for all vector fields X, Y on .M Now, we give a structure similar to Sasakian but not 

having contact. 

An n -dimensional differentiable manifold M is said to admit an almost para 

contact Riemannian structure ),,,( g such that [5, 6, 9] 

,1)(,0)(,0                                                                              (2.6) 

,)(),(),( 2  XXXXXXg                                                      (2.7) 

),()(),(),( YXYXgYXg                                                                      (2.8)            

for all vector fields X, Y on .M The equation 1)(  equivalent to 1 , then ξ is 

just the metric dual of . If ),,,( g satisfy the equations  

,,0 Xd X                                                                                             (2.9)                  

,)()(2)(),()(  YXXYYXgYX                                             (2.10)          

then M is called Para-Sasakian manifold or briefly, P-Sasakian manifold.         

Especially a P-Sasakian manifold is called a special para-Sasakian manifold or 

briefly, a SP-Sasakian manifold if 

).()(),()( YXYXgYX                                                                      (2.11)              

Also, a P-Sasakian manifold M is said to be  Einstein manifold if its Ricci tensor 

is of the form  
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),()(),(),( YXbYXagYXS                                                                   (2.12)      

For any vector fields X, Y, where a and b are function on .M  

If 0b , then  Einstein manifold to becomes an Einstein manifold. 

Further, on such an n-dimensional P-Sasakian manifold the following relations hold  

[1,4, 6, 9] 

   )(),()(),()),((),),(( XZYgYZXgZYXRZYXRg   ,             (2.13) 

    )1(  nQ ,                                                                                              (2.14)                                      

   XYYXYXR )()(),(    ,                                                                       (2.15) 

   
 ),()(),( YXgXYYXR  ,                                                                   (2.16)   

   
 )(),( XXXR  ,                                                                                 (2.17)                

   
)()1(),( XnXS   ,                                                                                 (2.18)       

   
)()()1(),(),( YXnYXSYXS    ,                                                  (2.19)  

for any vector fields X, Y, Z, where R(X,Y)Z  is the curvature tensor and S is the 

Ricci tensor. 

Definition 2.1. The M-projective curvature tensor P is defined as 

YZXSXZYS
n

ZYXRZYXP ),(),([
)1(2

1
),(),( 


          

                     ],),(),( QYZXgQXZYg                                                        (2.20)      

 

for all vector fields X, Y, Z on M [3]. WhereQ is the Ricci operator defined by

).,(),( YQXgYXS   The manifold is said to be m-projectively flat if P vanishes 

identically on .M  

Definition 2.2. The concircular curvature tensor C
~

on P-Sasakian manifold M of 

dimensional n is defined by 

]),(),([
)1(

),(),(
~

YZXgXZYg
nn

r
ZYXRZYXC 


                           (2.21)      

for all vector fields X, Y , Z on M . 

Definition 2.3. An n -dimensional, (n > 3), P-Sasakian manifold satisfying the 

condition 

     0),(2 ZYXP                                                                                      (2.22) 

is called -m-projectively flat manifold.                     

 

3. Main Results 
In this section, we prove the following theorems: 

Theorem 3.1. An n-dimensional m-projectively flat P-Sasakian manifold is locally 

isometric to the  Hyperbolic )1(nH . 
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Proof.  If 0P  then we get from (2.20) that          

               YZXSXZYS
n

ZYXR ),(),([
)1(2

1
),( 


      

                                    ].),(),( QYZXgQXZYg                                       (3.1) 

Putting Z in (2.21) and using (2.7), (2.15) and (2.18) we obtain 

               YXnXYn
n

XYYX )()1()()1([
)1(2

1
)()(  


               

                                                ].)()( QYXQXY                                      (3.2) 

Taking Y in (3.2) and using (2.6) we have 

                )()1()1([
)1(2

1
)( XnXn

n
XX 


                                  

                                       ].)()1(  XnQX   

Therefore with simplify of the above equation we get 

                                       .)1( XnQX                                                             (3.3) 

Now, putting (3.3) in (3.1) we obtain 

                           YZXSXZYS
n

ZYXR ),(),([
)1(2

1
),( 


  

                                          ],),()1(),()1( YZXgnXZYgn   

putting X  and using (2.16) and (2.18) we get 

YZnZYS
n

ZYgYZ )()1(),([
)1(2

1
),()(  


  

                                                          ],)()1(),()1( YZnZYgn    

with simplify of the above equation we obtain 

                           ).,()1(),( ZYgnZYS                                                         (3.4) 

thus the manifold is an Einstein manifold. 

Now, putting (3.3) and (3.4) in (3.1) we have 

.),()1(),()1([
)1(2

1
),( YZXgnXZYgn

n
ZYXR 


  

                ].),()1(),()1( YZXgnXZYgn   

Finally we get 

                           ].),(),([),( YZXgXZYgZYXR   

The above equation implies that M is of constant curvature 1 and consequently it 

is locally isometric with the Hyperbolic )1(nH .  

This the completes the proof of the theorem. □ 

Now, we construct an example of m-projectively flat P-Sasakian manifold 

which support Theorem (3.1) . 
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Example 1. We consider 3-dimensional manifold  3),,(:),,( RzyxzyxM  , 

where ),,( zyx are standard coordinates in
3R .  We choose the vector fields  

, 
z

E



3   ,   

y
eE z




2  , )(1

yx
eE z









 

which are linearly independent at each point of .M  Let g  be the Riemannian metric 

defined by 

0),(),(),( 133221  EEgEEgeEg  

  
1),(),(),( 332211  EEgEEgEEg . 

Let   be a 1-form defined by ),()( 3EZgZ  for any vector field Z on .M            

We define the (1,1) tensor field as   

.0)( 3 E   ,    22 )( EE    , 11)( EE         
    

 

The linearity property of  and g yields that 

                                    
1)( 3 e  , 

3

2 )( eUUU    

                                    
),()(),(),( WUWUgWUg    

 for any vector fields U, W, Z on .M  

Thus for 3E , ),,,( g defines an almost para contact structure on .M  

Let  be the Levi-Civita connection with respect to g, then for any )( 3RCf  we 

have 

                )()(],[ 122121 fEEfEEEE   

                              ))(())((
y

f
e

x

f
e

y
e

y

f
e

yx
e zzzzz





























  

                              .0   

Similarly we obtain 131 ],[ EEE  , .],[ 232 EEE   

Using the Koszuls formula   

                 ),(),(),(),(2 YXgXZgZYgZYg ZYXX                      

                                            ),],,([)],,([],,[ YXZgXZYgZYXg   
we have 

                 ),(),(),(2 1111311
EEgEEgEEg E   

                                           ),,(2 11 EEg  

therefore 311
EEE  . Similarly, it follows that 

 

021
 EE  ,  131

EEE    ,  012
 EE , 322

EEE           

232
EEE    , 013

 EE , 023
 EE  , .033

 EE                
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From the above, it can be easily seen that ),,,( g is a P-Sasakian structure 

on .M Hence M is a 3-dimensional P-Sasakian manifold. 

Now, using the formula 

                       
    ,, , ZZZZYXR YXXYYX   

we can easily calculate the non-vanishing components of the curvature tensor as 

follows 

                               2,22221 211221
, EEEEEER EEEEEE   

                                                 1E  

Similarly, 

1331 ),( EEEER   ,  2112 ),( EEEER   ,  2332 ),( EEEER    

3113 ),( EEEER  ,   3223 ),( EEEER   , 2323 ),( EEEER  . 

The above relations implies that M is of constant curvature -1. 

The definition of Ricci tensor in 3-dimensional manifold implies that 

),),((),(
3

1

ii

i

EYXERgYXS 


 . 

From the above relation we can calculate the non-vanishing components of Ricci 

tensor S as follows  

          ),),((),( 11

3

1

11 ii

i

EEEERgEES 


  

                           ),),((),),(( 21121111 EEEERgEEEERg   

                            ),),3(( 311 EEEERg                   

                           ,2   

therefore .2),( 11 EES Similarly we get 

2),( 33 EES , 2),( 22 EES 

We know that the scaler curvature of the 3-dimensional manifold is given by 

                                

).,(
3

1

ii

i

EESr 


  

In view of above relations, it follows that for all vector fields )(, MYX   the 

scaler curvature of the manifold is equal to -6 and the Ricci tensor 

                                    
).,(2),( YXgYXS   

Also, XQX 2 . Now, in view of (2.20) we have 

 

331133331331 ),(),([
2

1
),(),( EEESEEESEEEREEEP   

                     ]),(),( 331133 QEEEgQEEEg   

                       .0    
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Similarly, for all 3,2,1,, kji we obtain 

.0),( kji EEEP  

Therefore M is a 3-dimensional m-projectively flat P-Sasakian manifold. 

Also, M is an 3-dimensional Einstein manifold whit the constant curvature 1 . □ 

 

Theorem 3.2.  Let M be an n -dimensional, (n > 3),  -m-projectively flat P-

Sasakian manifold. Then M is an  -Einstein manifold.  

Proof.  If M is  -m-projectively flat P-Sasakian manifold then we get from 

(2.22) that 

0),(2 ZYXP   

this implies that 

0),),(( 2 WZYXPg   

for any vector fields X, Y , Z and W on M . Using (2.20) we obtain 

             ),(),([
)1(2

1
=),),(( WXgZYS

n
WZYXRg 


 

                                                      ),(),( WYgZXS   

                                                      ),(),( WXSZYg   

                                                      ].),(),( WYSZXg   

Let },,...,,{ 21 neee  be a local orthonormal basis of vector fields in .M  

Using that },,...,,{ 21  neee is also a local orthonormal basis, if we put 

ieWX  in above equation and sum up with respect to i , then 

),(),([
)1(2

1
=),),((

1

1=

1

1=

ii

n

i

ii

n

i

eegZYS
n

eZYeRg  



 

                                ),(),( ii eYgZeS   

                                            ),(),( ii eeSZYg   

                                            ].),(),( ii eYSZeg                                       (3.5)             

It can be easily verify that  

,),(),(=),),((
1

1=

ZYgZYSeZYeRg ii

n

i

 


                            (3.6) 

),1(=),(
1

1=




nreeS ii

n

i

                                                                     (3.7) 

             ,),(=),(),(
1

1=

ZYSZeSeYg ii

n

i




                                                  (3.8)    
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.1=),(
1

1=




neeg ii

n

i

                                                                              (3.9)          

 So by virtue of (3.6)-(3.9) the equation (3.5) can be written as  

),(),(1)[(
)1(2

1
=),(),( ZYSZYSn

n
ZYgZYS  


  

                                                         ],),(),()1)(( ZYSZYSnr    

this implies that  

             ,),(
1

)1(3
=),( ZYg

n

nr
ZYS 




 

 in view of (2.6) and (2.19) we get  

             .])()(),([
1

)1(3
=)()(1)(),( ZYZYg

n

nr
ZYnZYS  




  

 Finally we obtain 

             ).()()]1(
1

)1(3
[),(

1

)1(3
=),( ZYn

n

nr
ZYg

n

nr
ZYS 









 

Therefore M is an  -Einstein manifold. □ 

 

Theorem 3.3. Let M be an n-dimensional P-Sasakian manifold. Then 

M satisfies in condition 

0=).,(
~

PUC   
if and only if either M has scaler curvature )1( nnr  or M is locally 

isometric with the Hyperbolic ).1(nH  

Proof.  Since 0=).,(
~

PUC   we have 

,0=),().,(
~

ZYXPUC   

this implies that  

         0,=)),(
~

,(),),(
~

()],(),,(
~

[ ZYUCXPZYXUCPZYXPUC    

 in view of (2.21) we get  

           ),,,()),(()[
1)(

1(=0 UZYXPUZYXP
nn

r



  

                             ZYPXUgZYUPX ),(),(),()(    

                ZXPYUgZUXPY ),(),(),()(    

                             ].),(),(),()(  YXPZUgUYXPZ   

 Therefore M  has scalar curvature )(1= nnr   or  

                        ZYUPXUZYXPUZYXP ),()(),,,()),((=0    

    ZXPYUgZUXPYZYPXUg ),(),(),()(),(),(    
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    .),(),(),()(  YXPZUgUYXPZ   

 Taking the inner product of the last equation with   we get  

                        ),,,()()),((=0 UZYXPUZYXP    

    )),((),()),(()( ZYPXUgZYUPX    

    )),((),()),(()( ZXPYUgZUXPY    

    ).),((),()),(()(  YXPZUgUYXPZ   

 Finally, with simplify we get  

,0=),,,( UZYXP  
which implies that M is m-projectively flat. Thus in view of Theorem(3.1), M is 

locally isometric with the Hyperbolic ).1(nH The converseis trivial. This the 

completes the proof of the theorem. □ 

              

Theorem 3.4. If an n-dimensional P-Sasakian manifold M satisfies  

                                    0).,( PYXR  

 then M is locally isometric with the Hyperbolic )1(nH . 

Proof.  If 0).,( PYXR  then we have 

                   ,0),().,( WVUPYXR  

for all vector fields X, Y , U, V and W on M , this implies that 

   WVUYXRPWVUPYXR ),),((),(),(0   

                                       .),(),()),(,( WYXRVUPWVYXRUP                    

Putting X and taking the inner product of the last equation with , we obtain 

                ],),),(([],),(),([0  WVUYRPgWVUPYRg   

                                      ].,),(),([],)),(,([  WYRVUPgWVYRUPg   

In view of (2.7) and (2.16) we have 

                               )),(()(),,,(0 WVUPYYWVUP   

                                     )),(()()),((),( WVYPUWVPUYg    

                                     )),(()()),((),( WYUPVWUPVYg    

                                     ).),(()()),((),( YVUPWVUPWYg    

With simplify of the above equation we obtain 

0),,,( YWVUP  
Therefore M is m-projectively flat. In view of Theorem (3.1) manifold 

is locally isometric with the Hyperbolic )1(nH . □ 
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