
Journal of Physical Sciences, Vol. 16, 2012, 133-143 

ISSN: 0972-8791, www.vidyasagar.ac.in/journal 
Published on 31 December 2012 

133 

 

 

Reliability Analysis for Accelerated Life-Test with 

Progressive Hybrid Censored Data Using Geometric 

Process 
 

Kuang Zhou 
1, 2

 Yi-min Shi 
2   

and  Tian-yu Sun
2 

 
1 College of Automation, Northwestern Polytechnical University, 

Xi'an – 710072, Xi'an, China.  
2 
Department of Applied Mathematics, Northwestern Polytechnical University, 

Xi'an – 710072, Xi'an, China.  
Email: kzhoumath@163.com, ymshi@nwpu.edu.cn, sty@mail.nwpu.edu.cn 

 

Received October 19, 2012; accepted December 18, 2012 

 
ABSTRACT 

 

This paper considers the Geometric Process implementation of the constant stress 
accelerated life test model based on the progressive Type-I hybrid censored data. By 

assuming that the life variables under increasing stress levels form a Geometric 

Process, the likelihood functions are derived and then reduced to a single nonlinear 
equation to be solved numerically to obtain the maximum likelihood estimates 

(MLEs) of the parameters. Two bootstrap confidence intervals are proposed. The 

point and interval estimations for the component's reliability are also obtained. 

Finally, the Monte-Carlo simulation study is carried out to illustrate the proposed 
procedures. 
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1. Introduction 
Due to the rapid development of the product design and manufacture in life 

cycle, accelerated life testing (ALT) is adopted and widely used in manufacturing 
industries. Briefly, ALT is a method for making inference of the life character of 

devices at normal use conditions from failure data obtained at severe conditions 

regarding its relationship with the external stress variables. Three types of stress 
loadings are usually applied in ALT: constant stress, step stress and linearly 

increasing stress. The constant stress loading, which is a time-independent test 

setting, has several advantages over the time-dependent stress ones. It has been 
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studied by several authors, see [1–3]. Commonly, all available test data obtained 

from ALT are used in statistical analysis. However, in life testing experiments, often 

the data are censored. The two most common censoring schemes are termed as 

Type-I and Type-II censoring schemes. A mixture of Type-I and Type-II censoring 
schemes is known as the hybrid censoring scheme. The three conventional censoring 

schemes all have the drawbacks that they do not allow for removal of units at points 

other than the terminal of the experiment. The progressively hybrid censoring 
scheme (PHCS), which has this advantage, has become very popular in the 

reliability and life-testing experiments in the last few years. For the details of the 

PHCS, one may refer to Ref. [4–8].All the works have focused on the parameter 
inference problem under PHCS for different distributions. There is little work on the 

application of the PHCS to the ALTs. Li et al. [9] first discussed a simple step-stress 

accelerated test model for progressive Type-I hybrid censored exponential life data. 

The Geometric Process (GP) model is first applied to investigate a repair 
replacement model for a one-unit deteriorating system. Large numbers of studies in 

maintenance problems and system reliability have shown that the GP model is a 

good and simple model for analysis of data with a single trend or multiple trends, for 
example, the work of [10–12].So far, there is no study that utilizes the GP in the 

analysis of ALT with censored data, except for Shan’s thesis [13], where the author 

introduced the GP model for the analysis of ALT with complete, Type-I and Type-II 
censored exponential samples under the constant stress. 

In this paper, we consider the GP process implementation of the constant stress 

ALT model subject to progressive Type-I hybrid censoring scheme. The maximum 

likelihood and bootstrap confidence interval estimates of the model parameters and 
the item’s reliability are considered and their results are compared in Monte-Carlo 

simulation. 

 

2. Model description and notations 

2.1. The Geometric Process and PHCS 

Geometric Process was introduced by Lam [14, 15] when he studied the problem of 

repair replacement. It is defined below. 
 

Definition 2.1. (Geometric Process). A counting process (CP) is a common method 

to model the total number of events that have occurred in the interval. The CP   is 

said to be a Geometric Process (GP) with parameter  if there exists a real number 

  such that   are independently and identically 

distributed (iid) random variables with distribution function F. Here, the parameter  

is the ratio of the GP and the random variables are the time intervals 

between the  and  event of a CP  for =1, 2… 

Kundu[5] first proposed the progressively hybrid censoring scheme. Suppose  

independent identical items are placed on test, at the time of the failure, 

, of the remaining units are randomly removed. In the presence of 

progressively Type-I hybrid censoring schemes, we have one of the following types 

of observations: 
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1. Case I:          if  ; 

2. Case II:         if  , 

where m ,  , are fixed before and                              

Let the ending time of the test be  and the failure 

number before (including ) be .Therefore, 

                                 (1) 

         The likelihood function is 

            (2) 

where 

 

 

2.2. The Accelerated Life Tests and Geometric Process 
The geometric model for accelerated life test is based on the following 

assumptions: 

Assumption 1. s stress levels  are used. 

Assumption 2. For any level of stress, the life of test unit follows rayleigh 

distribution with failure rate (Ray ( )). The probability density function (pdf) is 

given by 

                           (3) 

Assumption 3. The mean life is assumed to be a log-linear function of the 

stress level s. 

                                       (4) 

where are unknown parameters depending on the nature of the product 

and the test method,  is a function of stress s. When  is an increasing 

function of s, the mean life at stress levels satisfies . 

        Assumption 4. Let the sequence of random variables denote the 

lifetimes under each stress level, where  denotes the items' lifetime under the 

design stress  at which items will operate ordinarily. We assume 

be a geometric process with ratio a>0. 

Assumption1-3are most commonly used in ALT [2, 9].Assumption 4 may be 

stronger than the usual discussion of the ALT in literatures, but in this way we can 

take advantage of the PHCS and ALT without increasing the complexity of 

calculation. The next theorem discusses how the assumption of geometric process 
(Assumption 4) is satisfied when there is log-linear relationship between a life 

characteristic and the stress level (Assumption 3). 
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Theorem 2.1. If  is a constant for k= , then 

 forms a geometric process. 

Proof. From (4) we can get: 

 

Therefore, 

 

Because  is a constant, note the right part of the above 

equation by a, thus, 

 

Let , then, 

 

We can see . From Definition 2.1,  forms a 

geometric process with ration a. □ 

From the properties of the GP, if the density function of  is f, then the 

probability density function of  will be given by  

Therefore, if lifetime under a sequence of increasing stress levels form a geometric 

process with ratio a, and the items' life at the design stress level follows , 

then the life distribution at the  stress level is . 

 

3. The Maximum Likelihood Estimators 
From (2) and (3) we can obtain the likelihood function of the observations 

tested under stress : 

  (5) 

where  denotes the  failure at the  stress level, is the fail numbers under 

this stress level and  

The total likelihood function is 

    (6) 

The log-likelihood function is (we still use the notation ) 

 (7) 



Reliability Analysis for Accelerated Life-Test Using Geometric Process 

 

137 

 

The first derivatives of  with respect to a and  are: 

                            (8) 

 

                           (9) 

where  

From , the estimate of  can be obtained as a function of a, 

                                         (10) 

Therefore, the estimate of a can be obtained easily by solving 

         (11) 

The Newton-Raphson method or the bisection method can be evoked to solve 

the above nonlinear equation of a. Once  is obtained, is obtained as .Based 

on the invariance of MLE, the MLE of the reliability of the component at time t can 

be easily obtained by . 

 

4.  Bootstrap confidence intervals 

We construct the confidence intervals for a and λ based on the parametric 
bootstrap, using the percentile bootstrap (Boot-p) interval method [16] and the 

bootstrap-t (Boot-t) method [17].  

 

Boot-p method: 

1. Based on the progressive Type-I hybrid censored sample, obtain and  , the 

MLEs of  and  , by the method proposed in section 3. 

2. For , based on  and , generate the bootstrap 

sample , where  

3. Obtain  and , the MLEs of  and , using the proposed method. 

4. Repeat steps 2-3 for B times and obtain  and , . 

5. The bootstrap percentile confidence interval endpoints for  and are the 

 quantiles of  and  ,respectively. 

Also,according to the invariance of MLE, the confidence interval endpoints of 

the unit's reliability are the  and  quantiles of  

 

Boot-t method: 

1. Estimate  and , say  ,  , by the method proposed in section 3 as before. 

2. Based on  and , generate the bootstrap sample  
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3. Obtain  and , the MLEs of  and , using the proposed method, and compute 

and where  and  can be 

calculated through the observed fisher information matrix, see the work of [5]. 

4. Determine the  statistic for  and  respectively, 

     

5. Repeat steps 2-4 for B times and obtain and , . 

6. Note the  quantiles of  and  by  

and , respectively. Then the boot-t confidence interval endpoints for  and  

are give by 

 

and 

 

respectively. 

Similarly, the boot-t confidence intervals of the reliability of the item can be 
obtained by 

 

5. Numerical study and conclusion 

In this section, we use Monte-Carlo simulations to compare different methods 

with different parameter values. The Type-I progressively hybrid censored data for a 

given set n,m,  and  are generated using the algorithm 

described in [5] and [18]. For simplify, without loss of generality, let  in the 

accelerated model (4).Thus, the ratio of the GP is . We consider different 

 and  values .We use the sampling scheme: 

, . 

The absolute relative bias (RABias) and mean square error (MSE) have been 
considered, where 
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Simulation results are presented to compare the performance of the different 

parameters  in the model for different sampling schemes . We replicate 

the process 1000 times in each case and report the average estimators, the RABias, 

MSE and the lower and upper bounds of the 95% confidence intervals. The reliability 

of the item at time t=0.7 is considered. The results are presented in Table 1-6. Figure 

2-3 display the reliability of the unit. 

        

 

 

 

 

 

 

 

 

Figure 2: The component reliability with      

 

From the results of the simulation study, we observe the following. 

1. For fixed fail ratio  as n increases, the RAbiases and the MSEs decrease 

for all cases, the reliability curve is more close to the theatrical one, as expected. 

2. For the fixed  , the  RABias and MSE of the estimators from samples 

tested under the six stages (s=6) ALT have good statistical properties than the four 

stages (s=4) one, which is quite intuitive. 

3. For fixed values of the ration , by increasing the tested numbers n, the 

lengths of both the two bootstrap CIs become less. 

4. For small sample sizes, the boot-t CIs are not better than the boot-p CIs in the 
sense of having longer widths, which is a little counterintuitive. 

In total, it can be obverted from the simulation results that the accuracy of 

estimations is closely related to the values of the parameters of the model and the 
choice of the progressive censored schemes, however, the method does improve for 

large sample size. 

Table1: The MLE estimators with  

n         m                                          a_RABias   a_MSE  _RABias   _MSE    

15       6    0.3    1.3067    1.5744   0.5448      0.0005     0.0039     0.4690       0.3349 

Figure 3: The component reliability with 
 

 

 



Kuang Zhou, Yi-min Shi and Tian-yu Sun 

 

140 

 

15       6    0.4    1.3109    1.3436   0.6426      0.0092     0.0038     0.2477       0.1081 

15       6    0.5    1.3057    1.2461   0.6836      0.0061     0.0033     0.1287       0.0509 

25      10   0.3    1.3065    1.3737   0.6298      0.0069     0.0024     0.2486       0.1084 

25      10   0.4    1.3074    1.1096   0.7396      0.0086     0.0022     0.0279       0.0162 
25      10   0.5    1.3081    1.1109   0.7391      0.0043     0.0021     0.0084       0.0138 

50      20   0.3    1.3016    1.1368   0.7286      0.0020     0.0009     0.0230       0.0073 

50      20   0.4    1.3072    1.0947   0.7456      0.0033     0.0011     0.0034       0.0089 
50      20   0.5    1.3022    1.0971   0.7446      0.0012     0.0011     0.0046       0.0092 

100    40   0.3    1.3040    1.1254   0.7332      0.0033     0.0004     0.0222       0.0038 

100    40   0.4    1.3016    1.1027   0.7424      0.0008     0.0005     0.0073       0.0044 

100    40   0.5    1.3001    1.1024   0.7425      0.0001     0.0007     0.0005       0.0040 

 

Table 2: The MLE estimators with  

n        m                                       a_RABias   a_MSE  _RABias  _MSE    

15      6    0.3    1.3071  1.4232   0.6088     0.0076     0.0014    0.1811      0.0725 

15      6    0.4    1.3089  1.3009   0.6606     0.0048     0.0014    0.1043      0.0454 

15      6    0.5    1.3128  1.2526   0.6808     0.0065     0.0021    0.0584      0.0430 
25     10   0.3    1.3086  1.2934   0.6637     0.0013     0.0010    0.1077      0.0361 

25     10   0.4    1.3061  1.2021   0.7019     0.0087     0.0015    0.0061      0.0172 

25     10   0.5    1.3042  1.2075   0.6996     0.0056     0.0012    0.0097      0.0184 

50     20   0.3    1.3004  1.2224   0.6934     0.0024     0.0004    0.0075      0.0072 
50     20   0.4    1.3005  1.2075   0.6996     0.0010     0.0005    0.0042      0.0085 

50     20   0.5    1.3041  1.1927   0.7057     0.0055     0.0006    0.0167      0.0092 

100   40   0.3    1.3009  1.2129   0.6974     0.0009     0.0002    0.0070      0.0038 
100   40   0.4    1.3009  1.2023   0.7018     0.0005     0.0002    0.0004      0.0034 

100   40   0.5    1.3024   1.1894  0.7071     0.0014     0.0002    0.0094      0.0045 

 

Table 3: 0.95 boot-p confidence interval for  

n        m            a_low     a_up     _low     _up       R_low    R_up             

15      6    0.3    1.2577    1.4989  1.4045     2.1796      0.3123    0.6168 

15      6    0.4    1.1481    1.3974  1.2532     2.1546      0.3207    0.6806 

15      6    0.5    1.2098    1.4252  0.9495     1.5399      0.5594    0.8018 
25     10   0.3    1.2230    1.3798  1.2538     1.8801      0.4206    0.6803 

25     10   0.4    1.2028    1.4066  1.0107     1.5486      0.5557    0.7786 

25     10   0.5    1.3159    1.4771  0.7375     1.0947      0.7456    0.8752 

50     20   0.3    1.2547    1.3908  0.9758     1.3298      0.6484    0.7919 
50     20   0.4    1.2514    1.3588  0.9159     1.2825      0.6683    0.8142 

50     20   0.5    1.2372    1.3328  0.9518     1.2684      0.6743    0.8010 

100   40   0.3    1.2477    1.3396  1.1333     1.3980      0.6195    0.7300 
100   40   0.4    1.3158    1.4072  0.8465     1.0545      0.7615    0.8390 

100   40   0.5    1.2544    1.3338  1.0605     1.2787      0.6699    0.7592 
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Table 4: 0.95 boot-t confidence interval for  

n       m          a_low     a_up      _low      _up          R_low    R_up             

15      6     0.3   1.2381    1.4982   1.0867      3.2686      0.0730    0.7488 

15      6     0.4   1.2479    1.5004   1.1359      1.8219      0.4434    0.7290 

15      6     0.5   1.1348    1.3538   1.0076      2.4714      0.2239    0.7798 
25     10    0.3   1.2902    1.4727   1.1597      1.7635      0.4668    0.7193 

25     10    0.4   1.1711    1.3411   0.9243      1.4570      0.5945    0.8111 

25     10    0.5   1.2529    1.4268   0.8798      1.4574      0.5943    0.8272 
50     20    0.3   1.2005    1.3034   1.0426      1.3355      0.6460    0.7662 

50     20    0.4   1.2271    1.3554   1.0701      1.5732      0.5453    0.7554 

50     20    0.5   1.3304    1.4633   0.8548      1.1637      0.7176    0.8361 
100   40    0.3   1.2933    1.3757   1.0615      1.3230      0.6513    0.7588 

100   40    0.4   1.2932    1.3746   0.9402      1.1541      0.7216    0.8053 

100   40    0.5   1.2405    1.3226  1.0555      1.3078      0.6577   0.7611 

 

Table 5: 0.95 boot-p confidence interval for  

n     m           a_low     a_up       _low     _up        R_low    R_up             

15      6    0.3    1.1832    1.3340   1.4077    2.3290     0.2647   0.6154 

15      6    0.4    1.2796    1.4728   0.9820    1.8883     0.4174   0.7896 

15      6    0.5    1.3484    1.5207   0.8687    1.4418     0.6009   0.8312 
25     10   0.3    1.2527    1.3616   1.1977    1.7703     0.4640   0.7036 

25     10   0.4    1.2928    1.4104   0.8769    1.2547     0.6800   0.8283 

25     10   0.5    1.2341    1.3410   1.0415    1.5580     0.5517   0.7666 
50     20   0.3    1.2951    1.3788   0.9842    1.2858     0.6669   0.7887 

50     20   0.4    1.2461    1.3365   1.0335    1.3866     0.6243   0.7697 

50     20   0.5    1.2432    1.3184   1.1834    1.5700     0.5467   0.7095 
100   40   0.3    1.2528    1.3118   1.1440    1.3833     0.6257   0.7257 

100   40   0.4    1.2702    1.3224   1.1021    1.2905     0.6650   0.7426 

100   40   0.5    1.2500    1.3081   1.2111    1.4875     0.5815   0.6981 

 

Table 6: 0.95 boot-t confidence interval for  

n      m             a_low     a_up       _low     _up       R_low      R_up             

15     6      0.3    1.1801    1.3960   1.0439    3.2452     0.0758    0.7657 

15     6      0.4    1.2439    1.3962   0.9764    1.8434     0.4349    0.7917 

15     6      0.5    1.2477    1.4069   0.8639    1.5841     0.5408    0.8329 
25     10    0.3    1.2425    1.3628   1.1781    1.8621     0.4276    0.7117 

25     10    0.4    1.2585    1.3741   0.9549    1.4293     0.6062    0.7998 

25     10    0.5    1.2423    1.3672   0.9254    1.4108     0.6141    0.8107 
50     20    0.3    1.2651    1.3476   1.0249    1.3514     0.6393    0.7731 

50     20    0.4    1.2753    1.3598   1.0385    1.4324     0.6049    0.7678 

50    20     0.5    1.2722    1.3574   1.0302    1.3486     0.6404    0.7710 
100   40    0.3    1.2461    1.3115   1.1451    1.4302     0.6059    0.7252 

100   40    0.4    1.2727    1.3367   1.1469    1.4218     0.6094    0.7245 

100   40    0.5    1.2901    1.3474   1.0534    1.3108     0.6564    0.7619 
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