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                                                  ABSTRACT 

 A technique is developed for obtaining the transient response of fourth order 
more critically damped nonlinear systems. The results obtained by the 
presented technique agree with the numerical results obtained by the fourth 
order Runge-Kutta method nicely. An example is solved to illustrate the 
method. 
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1. Introduction         
The control of micro vibration has become a growing research field due to the 
demand of high-performance systems and the advent of micro and nanotechnology in 
various scientific and industrial fields, such as semiconductor manufacturing, 
biomedical engineering, aerospace-equipments, and high-precision measurements. In 
micro and nanotechnology a small vibration is an important factor, as, due to a small 
vibration the produced equipment may be defective. So, in micro and nano-
technological industries, vibration is not desirable. But vibration is unavoidable. It 
may arise in different way, such as, earth quake, direct disturbance etc. So, vibration 
control in micro and nano-technological industries is very essential. In micro and 
nano-technological industries we keep watch that vibrations come to its equilibrium 
position in minimum time. The more critically damped systems come to equilibrium 
position in minimum time. So, more critically damped systems play an important role 
in micro and nano-technological industries. 

To investigate the transient behavior of vibrating systems the Krylov-
Bogoliubov-Mitropolskii (KBM) [4, 5] method is an extensively used method. 
Originally, the method was developed for obtaining the periodic solutions of second 
order nonlinear differential systems with small nonlinearities. Later, the method 
extended by Popov [9] to investigate the solutions of nonlinear systems in presence of 
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strong linear damping effects. Owing to physical importance Popov’s results were 
rediscovered by Mendelson [6]. Murty et al. [7] developed a technique based on the 
method of Bogoliubov’s to obtain the transient response of second and fourth order 
over-damped nonlinear systems. Later, Murty [8] presented a unified KBM method 
for second order nonlinear systems which covers the undamped, damped and over-
damped cases. Sattar [12] has found an asymptotic solution of a second order 
critically damped nonlinear system. Shamsul [14] has developed a new asymptotic 
solution for both over-damped and critically damped nonlinear systems. 

First, Shamsul and Sattar [13] developed a perturbation technique based on the 
work of KBM for obtaining the solution of third order critically damped nonlinear 
systems. Later, Shamsul [15] has investigated solutions of third order critically 
nonlinear systems whose unequal eigenvalues are in integral multiple. In article [15] 
Shamsul has also investigated solutions of third order more critically damped 
nonlinear systems. Shamsul [17] has also presented a perturbation technique for 
solving a third order over-damped system based on the KBM method when two 
roots of the linear equation are almost equal (rather than equal) and one root is 
small. Rokibul et al. [10] found a new technique for obtaining the solutions of third 
order critically damped nonlinear systems. 

In article [7], Murty et al. also extended the KBM method for solving fourth 
order over-damped nonlinear systems. But their method is too much complex and 
laborious. Akbar et al. [1] presented an asymptotic method for fourth order over-
damped nonlinear systems which is simple, systematic and easier than the method 
presented in [7], but the results obtained by [1] is same as the results obtained by [7]. 
Later, Akbar et al. [2] extended the method presented in [1] for fourth order damped 
oscillatory nonlinear systems. First, Rokibul et al. [11] extended the KBM method 
for obtaining the response of fourth order critically damped nonlinear systems. But 
none one of the above author’s investigated solutions of fourth order more critically 
damped nonlinear systems. 

In the present article we have developed a technique for obtaining the 
solutions of fourth order more critically damped nonlinear systems.      

2.The method 

Consider a fourth order weakly nonlinear ordinary differential system 
),,,(4321

)4( xxxxfxpxpxpxpx &&&&&&&&&&&& ε−=++++      (1) 

where ( )4x  denote the fourth derivative and over dots denote first, second and third 
derivative of x  with respect to t; 4321 ,,, pppp  are constants, ε  is the small 
parameter and ),,,( xxxxf &&&&&& is the given nonlinear function. As the equation is 
fourth order so there are four real negative eigenvalues, and three of the 
eigenvalues are equal (for more critically damped). Suppose the eigenvalues 
are µλλλ −−−− ,,, . When 0=ε , the equation (1) becomes linear and the 
solution of the corresponding linear equation is 
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 tt edetctbatx µλ −− +++= 0
2

000 )()0,(                                   (2)                                   
where 0000 ,,, dcba  are constants of integration. 

When 0≠ε , following [16] an asymptotic solution of the equation (1) is sought 
in the form 

L+++++= −− ),,,,()(),( 1
2 tdcbauedetctbatx tt εε µλ       (3) 

where dcba ,,, the functions of t  and satisfy the first order differential equations 
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We only consider first few terms in the series expansion of (3) and (4), we 
evaluate the functions iu and niDCBA iiii ,,2,1,,,, L=  such that cba ,,  and 
d  appearing in (3) and (4) satisfy the given differential equation (1) with an 
accuracy of order 1+nε . In order to determine these unknown functions it is 
customary in the KBM method that the correction terms, niui ,,2,1, L=  must 
exclude terms (known as secular terms) which make them large. Theoretically, the 
solution can be obtained up to the accuracy of any order of approximation. 
However, owing to the rapidly growing algebraic complexity for the derivation of 
the formulae, the solution is in general confined to a lower order, usually the 
first [8]. 

Now differentiating the equation (3) four times with respect to t, substituting 
the value of x and the derivatives )4(,,, xxxx &&&&&&  in the original equation (1), 
utilizing the relations presented in (4) and finally equating the coefficients ofε , we 
obtain 
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where ( ) ),,,(),,,,( 0000
0 xxxxftdcbaf &&&&&&= and  tt edetctbax µλ −− +++= )( 2

0 .  

Now, we expand the functional )0(f  in the Taylor’s series of the form (see also 
[12-15] for details) 
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Thus, using (6), the equation (5) becomes 
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KBM [4, 5], Murty et al. [7], Sattar [12], Shamsul and Sattar [13], Shamsul [15, 
17] imposed the condition that 1u  can not contain the fundamental terms (the 
solution (2) is called generating solution of (1) and its terms are called fundamental 
terms) of )0(f . Therefore, equation (7) can be separated for unknown functions 

1u and 111 ,, CBA  1D  in the following way: 
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And 
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Now equating the coefficients of 0t , 1t  and 2t ; from equation (8), we obtain 
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Solving the equation (10), we obtain  
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                                                                                                    (13) 
Substituting the value of 1C  from (13) into equation (11) and solving, we 

obtain 
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                                                                                                                     (14) 
Now substituting the value of 1C  from (13) and 1B from (14) into equation 

(12), we obtain 
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Now, we have only one equation (15) for obtaining the unknown functions 

1A  and 1D . Therefore, to separate the equation (15) for obtaining the unknown 
functions 1A  and 1D , we need to impose some restrictions and thus the value of 1A  



M.A. Hakim 
 

 

118

 

and 1D  can be found subject to the condition that the coefficients in the 
solution of 1A  and 1D  do not become large (see also [3, 15] for details). This 
completes the determination of 1A , 1B , 1C  and 1D . 

Since dcba &&&& ,,,  are proportional to small parameterε , so they are slowly 
varying functions of time t and as a first approximation, we may consider them as 
constants in the right hand side. This assumption was first made by Murty et al. [7]. 
Thus the solutions of the equation (4) become 
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                                                                                       (16) 
Equation (9) is an inhomogeneous linear ordinary differential equation; 

therefore it can be solved by the well-known operator method. 
Substituting the value of dcba ,,,  and  1u  in the equation (3), we shall get the 

complete solution of (1). 
Therefore, the determination of the first order improved solution is 

completed. 

2.1 Example 

The figure of the isolation (vibration free) table which is extensively used in the 
semiconductor manufacturing, biomedical engineering, aerospace-equipments, and 
high-precision measurements is given below. 
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Here 2m  and 1m  are the mass of the isolation and middle table respectively, 

2k  and 1k  are spring constants, 2c  and 1c  are damping coefficients and 2x , 1x  are 
the displacement of the isolation and middle table respectively due to disturbances. 

The governing equation of the isolation table is 
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                                                                                                               (17) 
Simplifying the equation (17), we obtain 
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When 211 ppp = , the three eigenvalues of the corresponding linear equation 
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For equation (18), the equations (10)-(12) and equation (9) respectively become 
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The solution of the equation (19) is 
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Substituting the values of 1B  and 1C  into equation (21), we shall get an 
equation for unknown functions 1A  and 1D . To separate the equation (21) for 
determining the unknown functions 1A  and 1D ,  in this article we considered the 
relation µλ 3≈  exists among the eigenvalues  (see also [13, 15] for details). i. e. 
the unequal eigenvalue λ  is the multiple ofµ . This type of relation ( µλ 3≈ ) 
appears intuitively in the symmetric problems. Since our problem is symmetric, 
therefore consideration of such type of relation is logical. Therefore, under this 
relation, we obtain 
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The particular solutions of (25) and (26) respectively become 
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Substituting the values of 1111 ,,, DCBA from the equations (27), (24), (23) and 
(28) into equation (16), we obtain  
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µ
ε

µ

2

23
04

0

tedpdd
−

+=         

           
Therefore, we obtain the first approximate solution of the equation (17) as 

),,,,()(),( 1
2 tdcbauedetctbatx tt εε µλ ++++= −−   

                                                                                  (31)  
where a  dcb ,,  are  given by the equat ion (30)  and 1u  given by (29). 

3. Result and Discussion 
 It is usual to compare the perturbation solution to the numerical solution 
to test the accuracy of the approximate solution. Let us consider 

,75.75,5.15 21 == kk  25.42,625.118 43 == kk .Thus we 
have 0.1,1.3 == µλ . We  have computed ),( εtx  by (31) in which dcba ,,,  are  
computed by equation (30) and 1u  is computed by equation (29) when 1.0=ε  
together with two sets of initial conditions ,5.00 =a  ,0.00 =b  ,3.00 =c  

1.00 =d  [or ,599982.0)0( =x  ,749542.1)0( −=x& 902058.5=x&&   
860722.21)0( −=x&&& ] and ,4.00 =a  ,0.00 =b  ,4.00 =c  1.00 =d  [or 

,499969.0)0( =x ,439448.1)0( −=x& 140599.5=x&& , 739441.20)0( −=x&&& ] for 
various values of t and the results are presented in the Table I and II respectively. 
The corresponding numerical solution (designated by x*) have been computed by 
a fourth order Runge-Kutta method. As we have truncated the series (3) from 2ε  in 
the solution (31), so errors should occur 1% when 1.0=ε . But from table I and II, 
we see that errors are smaller than 1%.  

 
                                                           Table I 

t  x *x  Errors% 

0.0 0.599982 0.599982 0.00000 
0.5 0.163559 0.163550 0.00550 
1.0 0.056936 0.056904 0.05623 
1.5 0.022951 0.022912 0.17021 
2.0 0.010342 0.010310 0.31037 
2.5 0.005155 0.005133 0.43711 
3.0 0.002788 0.002774 0.50468 
3.5 0.001592 0.001583 0.56854 
4.0 0.000938 0.000932 0.64377 
4.5 0.000561 0.000558 0.53763 
5.0 0.000338 0.000336 0.59523 

Initial values are   ,5.00 =a  ,0.00 =b  ,3.00 =c  1.00 =d and 1.0=ε  
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x  Computed by (31) *x is computed by Runge-Kutta method. 
 
                                                   Table II 

t  x *x  Errors% 
0.0 0.499969 0.499969 0.00000 
0.5 0.147644 0.147639 0.00338 
1.0 0.056938 0.056921 0.02986 
1.5 0.024147 0.024127 0.08289 
2.0 0.010951 0.010935 0.14631 
2.5 0.005381 0.005370 0.20484 
3.0 0.002861 0.002854 0.24526 
3.5 0.001614 0.001609 0.31075 
4.0 0.000944 0.000941 0.31880 
4.5 0.000563 0.000561 0.35650 
5.0 0.000339 0.000338 0.29585 

Initial values are   ,4.00 =a  ,0.00 =b  ,4.00 =c  1.00 =d  and 1.0=ε  
x  Computed by (31) 

*x is computed by Runge-Kutta method 
 

  Again for ,6.4=λ  5.1=µ , we have computed ),( εtx by (31) in which 
dcba ,,,  are  computed by equation (30) and 1u  is computed by equation (29) when 

1.0=ε  together with another two sets of initial conditions ,5.00 =a  
,0.00 =b  ,3.00 =c  1.00 =d  [or ,599999.0)0( =x  

,549924.2)0( −=x& 004210.12=x&& , 204288.60)0( −=x&&& ] and ,4.00 =a  
,0.00 =b  ,4.00 =c  1.00 =d  [or ,499999.0)0( =x  

,089921.2)0( −=x& 088197.10=x&& , 230522.53)0( −=x&&& ] for various values of t 
and the results are presented in the Table III and IV respectively.                                   
 

Table III 
t  x *x  Errors% 

0.0 0.599999 0.599999 0.00000 
0.5 0.092656 0.092655 0.00107 
1.0 0.023288 0.023280 0.03436 
1.5 0.008250 0.008244 0.07278 
2.0 0.003495 0.003492 0.08591 
2.5 0.001592 0.001591 0.06285 
3.0 0.000744 0.000743 0.13485 
3.5 0.000350 0.000350 0.00000 
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4.0 0.000165 0.000165 0.00000 
4.5 0.000078 0.000078 0.00000 
5.0 0.000037 0.000037 0.00000 

Initial values are   ,5.00 =a  ,0.00 =b  ,3.00 =c  1.00 =d and 1.0=ε  

x  Computed by (31) *x is computed by Runge-Kutta method. 
 

Table IV 
t  x *x  Errors% 

0.0 0.499999 0.499999 0.00000 
0.5 0.085137 0.085138 0.00117 
1.0 0.023288 0.023284 0.01717 
1.5 0.008376 0.008373 0.03582 
2.0 0.003525 0.003524 0.02837 
2.5 0.001598 0.001597 0.06261 
3.0 0.000745 0.000744 0.13440 
3.5 0.000350 0.000350 0.00000 
4.0 0.000165 0.000165 0.00000 
4.5 0.000078 0.000078 0.00000 
5.0 0.000037 0.000037 0.00000 

Initial values are   ,4.00 =a  ,0.00 =b  ,4.00 =c  1.00 =d and 1.0=ε  
x  Computed by (31) *x is computed by Runge-Kutta method. 

 If we do not change the ratio (the ratio is 1:3: ≈µλ  and by considering 
1,1.3 == µλ ) but increase the difference (by considering 5.1,6.4 == µλ ) we 

see that the results become more near to the numerical results than the previous 
results. 

 
4. Conclusion 

In presence of strong linear damping forces, approximate solutions of a fourth 
order more critically-damped nonlinear system have been found base on the KBM 
method. The solutions obtained by this method show good coincidence with 
corresponding numerical values.                                                            
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