
Journal of Physical Sciences, Vol. 14, 2010, 145-163 
ISSN: 0972-8791, www.vidyasagar.ac.in/journal 
Published on December 24, 2010 
 

 

Flow through a Rotating Curved Square Duct:  
The Case of Positive Rotation 

 
R. N. Mondal, M. R. Islam, M. S. Uddin and A. K. Datta  

 
Mathematics Discipline; Science, Engineering and Technology School, 

Khulna University, Khulna-9208, Bangladesh 
Email: rnmondal71@yahoo.com 

 
Received September 27, 2010; accepted November 10, 2010 

 
ABSTRACT 

 
In this paper, a comprehensive numerical study is presented for the flow 
characteristics through a rotating curved duct with square cross section. Numerical 
calculations are carried out by using a spectral method and covering a wide range of 
the Taylor number 30000 ≤≤ Tr  for two cases of the Dean numbers, Case 
I: 1000=Dn  and Case II: 2000=Dn . A temperature difference is applied across 
the vertical sidewalls for the Grashof number 500=Gr , where the outer wall is 
heated and the inner one cooled. In this paper, the positive rotation of the duct about 
the center of curvature is imposed, and the effects of rotation (Coriolis force) on the 
flow characteristics are investigated. As a result, multiple branches of asymmetric 
steady solutions with two-, three- and four-vortex solutions are obtained. Time 
evolution calculations as well as phase spaces of the unsteady solutions are obtained, 
and it is found that in the unstable region the flow undergoes in the scenario 
“periodic→ chaotic→multi-periodic→  periodic→  steady-stable”, if Tr is 
increased. 
 
Keywords: Rotating curved duct, Dean number, Taylor number, Secondary 
flow, Time evolution. 
 
1. Introduction 

The study of flows and heat transfer through curved ducts and channels is of 
fundamental interest because of its practical application in chemical, mechanical and 
biological engineering. Due to engineering application and their intricacy, the flow 
in a rotating curved duct has become one of the most challenging research fields of 
fluid mechanics. A quantitative analogy between flows in stationary curved pipes 
and orthogonally rotating straight pipes has been reported by Ishigaki [1, 2]. Taking 
this analogy as a basis, this study describes the characteristics of more general and 
complicated flow in rotating curved ducts, which are relevant to systems involving 
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helically or spirally coiled pipes rotating about the coil axis. Such rotating flow 
passages are used in cooling systems in rotating machinery such as gas turbines, 
electric generators and electric motors. The flow systems are also encountered in 
separation processes; scientists have paid considerable attention in order to study the 
characteristics of the flows in these rotating systems. The readers are referred to 
Berger et al. [3] and Nandakumar and Masliyah [4] for some outstanding reviews on 
rotating and non-rotating curved duct flows. 
           One of the interesting phenomena of the flow through a curved duct is the 
bifurcation of the flow because generally there exist many steady solutions due to 
channel curvature. Many researches have performed experimental and numerical 
investigation on developing and fully developed curved duct flows. An early 
complete bifurcation study of two-dimensional (2-D) flow through a curved duct 
with square cross section was performed by Winters [5]. However an extensive 
treatment of the flow through a curved square duct was performed by Mondal [6]. 
He found a close relationship between the unsteady solutions and the bifurcation 
diagram of steady solutions. Ishigaki [2] examined the flow structure and friction 
factor numerically for both the counter-rotating and co-rotating curved circular pipe 
with a small curvature. Selmi et al. [7] examined the combined effects of system 
rotation and curvature on the bifurcation structure of two-dimensional flows in a 
rotating curved duct with square cross section. Wang and Cheng [8], employing 
finite volume method, examined the flow characteristics and heat transfer in curved 
square ducts for positive rotation and found reverse secondary flow for the co-
rotation cases.  
           Studies of unsteady flows in curved ducts, initiated by Lyne [9], have 
attracted much interest not only for engineering applications to heat exchangers and 
chemical reactors, but also because of its relevance to hemodynamical problems 
(Pedley, [10]) i.e. relating to blood flow in human arterial systems. A number of 
theoretical and experimental studies on periodically unsteady flow in curved tubes 
have been carried out in last few decades. Belaidi et al. [11] studied the flow in 
tightly coiled 090  bend with aspect ratios of 0.5 and 0.25 and a curvature ratio of 
1.0. They measured stream wise velocities along the line of symmetry at different 
stream wise positions and observed the flow oscillations near the inner wall of the 
duct at a frequency of around 25 Hz. The oscillations seemed to be associated with 
instability of the secondary flow jet. Kelleher et al. [12] were the first to observe 
experimentally the flow oscillation in a curved channel. Their study was focused on 
steady low Reynolds number flow with the channel of aspect ratio 40 and a mild 
curvature. They mentioned that for higher flow rates, the time-dependent flows are 
observed consisting of stream wise periodic traveling waves superimposed on the 
Dean vortices. These traveling waves have been studied extensively since 1988 and 
the results have been helpful in explaining the traveling wave phenomena in a 
curved duct. Ligrani and Niver [13] investigated the oscillations in the geometry 
used by Kelleher et al. [12]. Ligrani and Niver [13] identified several of other 
oscillating modes as well as unsteady splitting and merging of Dean vortices. 
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            Time dependent analysis of fully developed curved duct flows was first 
initiated by Yanase and Nishiyama [14] for a rectangular cross section and by 
Yanase, Goto and Yamamoto [15] for a circular cross section. In both the studies 
they investigated unsteady solutions for the case where dual solutions exist. 
However, the time-dependent behavior of the flow in a curved rectangular duct of 
large aspect ratios was investigated, in detail, by Yanase et al. [16] numerically. 
They performed time-evolution calculations of the unsteady solutions with and 
without symmetry condition, and observed that periodic oscillations are available 
with symmetry condition while aperiodic time evolutions without symmetric 
condition. Wang and Yang [17, 18] performed numerical as well as experimental 
investigation on fully developed periodic oscillation in a curved square duct. Flow 
visualization in the range of Dean numbers from 50 to 500 was carried out in their 
experiment. They showed, both experimentally and numerically, that the temporal 
oscillation takes place between symmetric/asymmetric 2-cell and 4-cell flows where 
there are no stable steady flows. In order to study the time-dependent behavior of the 
unsteady solutions, recently, Mondal et al. [19] performed numerical prediction of 
the unsteady solutions through a stationary curved square duct flow for the 
isothermal flows. They showed that periodic solutions turn into chaotic solution 
through a multi-periodic solution, if the Dean number is increased no matter what 
the curvature is.  They also showed that the chaotic solution becomes weak for small 
Dean number, while the chaotic solution becomes strong for large Dean number. 
Very recently, Mondal et al. [20] performed a comprehensive numerical study of the 
non-isothermal flows through a rotating curved square duct for small Grashof 
number )100( =Gr  and obtained interesting results. In the present study, however, 
we perform numerical study of the non-isothermal flows through a rotating curved 
square duct flow for large Grashof number )500( =Gr , because it is expected that 
more completed flow behavior of the unsteady solutions may occur for large 
Grashof number case. Transient behavior of the unsteady solutions, such as periodic, 
multi-periodic or chaotic solutions are yet unresolved for the non-isothermal flow in 
a rotating curved square duct for large Grashof number. The present study is, 
therefore, an attempt to fill up this gap with the study of the non-linear behavior of 
the unsteady solutions by time-evolution calculation. 

In the present study, a comprehensive numerical study is presented for fully 
developed bifurcation structure of two-dimensional (2D) viscous incompressible 
fluid flow through a rotating curved square duct whose outer wall is heated and 
inner wall is cooled. Flow characteristics are investigated over a wide range of 
Taylor number 30000 ≤≤ Tr  for two cases of the Dean numbers 1000=Dn  
and 2000=Dn  for the Grashof number 500=Gr . Studying the effects of rotation 
on the flow characteristics, caused by the buoyancy and Coriolis forces, is an 
important objective of the present study. 
 
2. Governing equations 
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Consider a hydrodynamically and thermally fully developed two-dimensional 
flow of viscous incompressible fluid through a rotating curved square duct with 
constant curvature.  The height and width of the duct cross section are 2h and l2 , 
respectively. In the present case, lh = because we are considering a square duct. 
Figure 1 shows the coordinate system with relevant notations, where C is the center 
of the duct cross-section and L is the radius of curvature of the duct. The x′ and y′  
axes are taken to be in the horizontal and vertical directions respectively, and z ′  is 
the coordinate along the center-line of the duct, i.e., the axial direction.  The system 
rotates at a constant angular velocity TΩ around the y′ axis. It is assumed that the 
outer wall of the duct is heated while the inner one is cooled. The temperature of the 
outer wall is TT ∆+0  and that of the inner wall is TT ∆−0 , where T∆ > 0. It is 
also assumed that the flow is uniform in the axial direction, and that it is driven by a 

constant pressure gradient 







′∂
′∂−

=
z
PGG along the centre-line of the duct. 

 

Figure 1. Coordinate system of the rotating curved duct 

The dimensional variables are non-dimensionalized by using the 

representative length l  and the representative velocity 
l

U υ
=0 , where υ  is the 

kinematics viscosity of the fluid. We introduce the non-dimensional variables 
defined as: 
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where vu,  and w  are the non-dimensional velocity components in the yx, and z  
directions, respectively; t  is the non-dimensional time, P  is the non-dimensional 

pressure, δ  is the non-dimensional curvature defined as ,
L
l

=δ  and temperature is 

nondimensionalized by T∆ . Henceforth, all the variables are nondimensionalized if 
not specified. Since the flow field is uniform in the z  direction, the sectional stream 
function ψ  is introduced as 
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Then, the basic equations for the axial velocity w , the stream function ψ  and 
temperature T  are expressed in terms of non-dimensional variables as 
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The non-dimensional parameters Dn , the Dean number; Gr , the Grashof 

number;Tr , the Taylor number  and Pr ,  the Prandtl number, which appear  in 
equations (2) - (4) are defined as: 
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where µ , κβ ,  and g  are the viscosity, the coefficient of thermal expansion, the 
co-efficient of thermal diffusivity and the gravitational acceleration respectively. µ   
is the viscosity of the fluid. In the present study, only Dn  and Tr  are varied, 
whileδ , Gr  and Pr  are fixed as 1.0=δ , 500=Gr  and 0.7Pr = (water).  
 
           The rigid boundary conditions for w  and ψ  are used as 
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and the temperature T  is assumed to be constant on the walls as 
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It should be noted that Eqs. (2), (3) and (4) are invariant under the transformation of 
the variables 
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Therefore, the case of heating the inner sidewall and cooling the outer sidewall can 
be deduced directly from the results obtained in this study. Equations (2) - (4) would 
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serve as the basic governing equations which are solved numerically as discussed in 
the following section. 

3. Numerical Calculations 
          In order to solve the Eqs. (2) - (4) numerically, the spectral method is used. 
This is the method which is thought to be the best numerical method for solving the 
Navier-Stokes as well as energy equations (Gottlieb and Orszag [21]). By this 
method the variables are expanded in a series of functions consisting of Chebyshev 
polynomials. That is, the expansion functions )(xnφ  and  )(xnψ  are expressed as  
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where ))(coscos()( 1 xnxCn
−=  is the thn  order Chebyshev polynomial. 

),,(),,,( tyxtyxw ψ  and ),,( tyxT  are expanded in terms of the expansion 
functions )(xnφ  and )(xnψ  as: 
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where M  and N  are the truncation numbers in the x  and y  directions 
respectively, and nmnmw ψ,  and nmT  are the coefficients of  expansion. In order to 

obtain a steady solution ),(),,( yxyxw ψ  and ),( yxT , the expansion series (11) is 
submitted into the basic Eqs. (2), (3) and (4), and the collocation method (Gottlieb 
and Orszag [21]) is applied. As a result, a set of nonlinear algebraic equations for 

nmnmw ψ,  and nmT  are obtained. The collocation points ( )ji yx ,  are taken to be 
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where 1,,1 += Mi … and 1,,1 += Nj … . Steady solutions are obtained by the 
Newton-Rapshon iteration method assuming that all the variables are time 
independent. The convergence is assured by taking pε < 1010− , where subscript p 

denotes the iteration number and pε  is defined as: 
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In the present numerical calculation, for sufficiently accuracy of the solutions, we 
take 20=M  and 20=N . Finally, in order to calculate the unsteady solutions, The 
Crank-Nicolson and Adams-Bashforth methods together with function expansion 
(11) and the collocation methods are applied to Eqs. (2) to (4). 

4. Flux through the Duct 
        The dimensional total flux Q′  through the duct in the rotating coordinate 
system is calculated by:  

                                              ∫ ∫
− −

=′′′=′
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where,                         ∫ ∫
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is the dimensionless total flux. The mean axial velocity w ′  is expressed as  

                                                    
d

Qvw
4

=′                            (16) 

          In the present study, Q  is used to denote the steady solution branches and to 
pursue the time evolution of the unsteady solutions. 

5. Results and Discussion  
We take a curved duct of square cross section and rotate it around the center of 

curvature with an angular velocity TΩ . In the present study, we investigate the flow 
characteristics for the case of positive rotation of the duct (positiveTr ), and discuss 
the numerical prediction of flow phenomena for two cases of the Dean numbers, 
Case I: 1000=Dn and Case II: 2000=Dn , over a wide range of the Taylor 
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number 30000 ≤≤ Tr . Thus, an interesting and complicated flow behavior will be 
expected if the duct rotation is considered for these cases. 
 
5.1 Case I: 1000=Dn  
5.1.1 Steady solutions 
         By using the path continuation technique as discussed by Keller [22], we 
obtain two branches of steady solutions for 1000=Dn  over the Taylor 
number 30000 ≤≤Tr . The two steady solution branches are named the first steady 
solution branch (first branch, thin solid line) and the second steady solution branch 
(second branch, dashed line), respectively. It should be noted here that Mondal et al. 
[23] obtained two branches of steady solutions for the non-isothermal flow through a 
curved square duct without rotation. Figure 2 shows the flux Q  through the duct 
versus the Taylor number Tr  for 1000=Dn . It is found that the first branch 
consists of asymmetric two-vortex solutions while the second branch is composed of 
asymmetric two-, three-, and four- vortex solutions. These vortices are generated 
due to the combined action of the centrifugal force and Coriolis force. 

 

                     Figure 2: Steady solution branches for 1000=Dn  and 500=Gr . 
 
 
5.1.2 Unsteady solutions by Time evolution calculation 

In order to study the non-linear behavior of the unsteady solutions, time-
evolution calculations are performed for Tr  in the range 30000 ≤≤ Tr  
at 1000=Dn . The first steady solution branch is partly unstable at the small value 
of Tr  (Tr 3.15≤ ). Thus in the unstable region, we perform time evolution of Q  
for 0=Tr , which is shown in Fig. 3(a). It is found that the flow is time periodic. In 
order to view the multi-periodic oscillation more clearly, an enlargement of Fig. 3(a) 
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is shown in Fig. 3(b). In Fig. 3(a), the relationship between the periodic solution and 
the steady states, that is the values of Q for the steady solutions at 0=Tr , are also 
shown by straight lines using the same kind of lines as were used in the bifurcation 
diagram in Fig. 2. As seen in Fig. 3(a), the multi-periodic solution at 0=Tr  
oscillates in the region between the upper and the lower parts of the second steady 
solution branch, and the upper part of the second branch or the first branch plays a 
role of an envelop of this periodic oscillation. 

 
          

                                

 

   

                                   

                                  (a)                                                               (b) 

                                  

  
     ψ     

 (c) 

     T              

 

   t       45.80        45.85         45.90          45.95          46.00        46.05         46.10         

Figure 3: Unsteady solution for 1000=Dn  and 0=Tr . (a) Time evolution of Q  
and the values of Q for the steady solutions. (b) An enlargement of Fig. 
3(a). (c) Contours of secondary flow (top) and temperature profile (bottom)  
for one period of oscillation at 10.4680.45 ≤≤ t .          

 

           Then, in order to see the change of the flow characteristics as, time proceeds, 
contours of typical secondary flow and temperature distribution are shown in Fig. 
3(c) for one period of oscillation at 0=Tr , where it is seen that the periodic 
solution at 0=Tr oscillates between asymmetric two- and four-vortex solutions. It 
should be noted here that the result of time evolution for 1000=Dn , obtained in 
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the present study for 500=Gr  and 0=Tr , has a similarity with that of the result 
obtained by Mondal et  al. [20] for 100=Gr and 100=Tr . 

In order to be sure whether the flow oscillation presented in Fig. 3 
for 1000=Dn is periodic or multi-periodic, we now discuss the transitional 
behavior of the unsteady solutions by drawing phase spaces. In Fig. 4, the oscillation 
for 1000=Dn  shown in Fig. 3, is explicitly exhibited by drawing the orbit of the 
solution in the phase spaces, where the abscissa is Q and the ordinate isγ . The 
orbits are drawn by tracing the time evolution of a solution. As seen in Fig. 4, the 
flow is clearly multi-periodic.  

     
Figure 4: Phase plots in the γ−Q  plane for 2000=Dn and Tr =0, where 

∫∫= dydxψγ . 

 
5.2 Case I: 2000=Dn  
5.2.1 Steady solutions  

We obtain four branches of steady solutions for 2000=Dn  and 500=Gr  
over a wide range of Tr for 30000 ≤≤Tr . The bifurcation diagram of steady 
solutions is shown in Fig. 5. The four steady solution branches are named the first 
steady solution branch (first branch, thick solid line), the second steady solution 
branch (second branch, dashed  line), the third  steady solution branch (third branch, 
thin solid line) and the fourth steady solution branch (fourth branch, dash dotted 
line), respectively.  
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Figure 5: Steady solution branches for 2000=Dn  and 500=Gr .     

 
 

The solution branches are distinguished by the nature and number of 
secondary flow vortices appearing in the cross section of the duct. In this regard, it 
should be noted that Mondal et al. [20] also obtained four braches of steady 
solutions for 100=Gr , but our result is different from theirs in the formation of 
solution structure and secondary vortices. This is due to the cause of strong 
buoyancy force i.e. we consider large Grashof number. It is found that there exist 
two- and four-vortex solutions on various branches. The first branch consists of 
asymmetric two-vortex solutions. The second branch is composed of asymmetric 
two-, three- and four-vortex solutions. The third branch is composed of asymmetric 
two- and four-vortex solutions and the forth branch is composed of asymmetric four-
vortex solutions.  
 
5.2.2 Unsteady solutions by Time evolution calculation 

In order to investigate the non-linear behavior of the unsteady solutions, we 
perform time-evolution calculations of the unsteady solutions for 2000=Dn  at 

30000 ≤≤ Tr . Time evolution of Q  for 2000=Dn  and 279≤Tr  shows that the 
value of Q  quickly approaches steady-state no matter what the initial condition we 
use.  
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    (a) 
 
                                                                                                         
                           
 
                             ψ  
 
 
 
                             T  
                    (b) 
                             t        27.23       27.25         27.29        27.30 
 

Figure 6: Unsteady solution for 1000=Dn  and  300=Tr  (a) Time evolution 
of Q  and the values of Q for steady solutions. (b) Contours of secondary 
flow (top) and temperature profile (bottom) for one period of oscillation 
at 30.2723.27 ≤≤ t . 

 
Then, in order to see what happens when all the steady solutions are linearly 

unstable in the region 80.922279 ≤≤ Tr , time evolutions of Q  are then performed 
for 700,500,300=Tr  and 900. Figure 6(a) shows the time-evolution of Q  
for 300=Tr , where it is seen that the flow oscillates periodically. In the same 
figure, to observe the relationship between the periodic solution and the steady 
states, the values of Q  for the steady solution branch at 300=Tr  are shown by 
straight lines using the same kind of lines as were used in the bifurcation diagram in 
Fig. 4. As seen in Fig. 6(a), the unsteady solution at 300=Tr  oscillates in the 
region below the upper part and above the lower part of the third steady solution 
branch. To observe the periodic change of the flow characteristics and temperature 
distributions, contours of typical secondary flow and temperature profile for one 
period of oscillation at 30.2723.27 ≤≤ t  are shown in Fig. 6(b), where it is seen 
that the periodic oscillation at 300=Tr is an asymmetric two-vortex solution. 

 
 

 
  
 
 
 
 
 
 
          (a) 
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                           ψ  
 
 
                            
                            T 
 
                     (b)   t       18.97         18.99        19.01         19.05 
 

Figure 7: Unsteady solution for 1000=Dn  and  500=Tr  (a) Time evolution 
of Q  and the values of Q for steady solutions. (b)  Contours of secondary 
flow (top) and temperature profile (bottom) for one period of oscillation at 
time 05.1997.18 ≤≤ t . 

 
 
 

          Next, the time evolution ofQ , together with the values of Q  for the 
steady solutions indicated by straight lines, are shown in Fig. 7(a) for 500=Tr . It is 
found that the flow oscillates periodically. The associated secondary flow patterns 
and temperature profiles at 05.1997.18 ≤≤ Tr  are shown in Fig. 7(b). It is found 
that the unsteady flow at 500=Tr  also oscillates between the asymmetric two-
vortex solutions. Time evolution of Q , together with the values of Q for the steady 
solution branches indicated by straight lines, are shown in Fig. 8(a) for 700=Tr . It 
is found that the flow oscillates multi-periodically in the region along the values of 
Q on the upper parts of the first steady solution branch. The associated secondary 
flow patterns and temperature profiles at 63.1055.10 ≤≤ t  are shown in Fig. 8(b). 
It is found that the unsteady flow at 700=Tr  also oscillates between the 
asymmetric two-vortex solutions. 
 
 
    
 

       
 
 
 
      

 
                        (a)                                                              
                                                                               
 



Flow through a Rotating Curved Square Duct: The Case of Positive Rotation 
 

 

159 

 
 
                            ψ  
 
 
 
                             T  
  
                     (b)    t     10.55          10.57         10.59         10.63 
 
Figure 8: Unsteady solution for 1000=Dn  and 700=Tr  (a) Time evolution ofQ  

and the values of Q  for the steady solutions. (b) Contours of secondary flow 
(top) and temperature profile (bottom) for one period of oscillation at 
time 63.1055.10 ≤≤ t . 

 
Similarly, time evolution ofQ , together with the values of Q for the steady 

solution branches indicated by straight lines, are shown in Fig. 9(a) for 900=Tr . It 
is found that the flow oscillates multi-periodically in the region along the values of 
Q on the lower part of the forth steady solution branch. The associated secondary 
flow patterns and temperature profiles for one period at 89.781.7 ≤≤ t   are shown 
in Fig. 9(b). It is found that the unsteady flow at 900=Tr  also oscillates between 
the asymmetric two-vortex solutions. Time evolutions of Q  are then performed at 
several values Tr  for 300090.922 ≤≤ Tr , and it is found that the value of Q  
approaches steady state. The reason is that the steady flow is linearly stable on the 
first steady solution branch in this region. 
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                             ψ  
 
 

 
                              T  
   
                     (b)    t       7.81           7.83            7.85           7.89                                      
 
Figure 9: Unsteady solution for 1000=Dn  and 900=Tr   (a) Time evolution 

of Q  and the values of Q for the steady solutions. (b)  Contours of 
secondary flow (top) and temperature profile (bottom) for one period of 
oscillation at 89.781.7 ≤≤ t . 

 
 

    
 

                                  (a)                                                         (b) 

  
 

                                  (c)                                       (d) 
Figure 10: Phase plots in the γ−Q  plane for 2000=Dn , where ∫∫= dydxψγ  

            (a) Tr  = 300, (b) Tr  = 500, (c) Tr = 700, (d) Tr  = 900. 
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           We now discuss the unsteady flow behavior by drawing phase spaces 
for 2000=Dn . The change of the flow state from periodic oscillation to transitional 
chaos and then multi-periodic or periodic oscillation is explicitly exhibited by 
drawing the orbit of the solution in the phase spaces as shown in Figs. 10(a-d) for 
Tr  = 300, 500, 700 and 900. The orbits are drawn by tracing the time evolution of 
the solutions. As seen in Fig. 10(a), a periodic solution is seen for Tr  = 300; for Tr  
= 500, however, an entangled chaotic orbit overlaps the multi-periodic orbit which is 
termed as transitional chaos (Mondal et al. [19]), though the time evolution result 
presented in Fig. 7 for Tr  = 500 seems to be multi-periodic but actually it is chaotic 
solution as seen from Fig. 10(b). Similarly, the time evolution result presented in 
Fig. 8 for Tr  = 700 seems to be periodic but their phase space (Fig. 10(c)) shows 
that it is multi-periodic. Time evolution result forTr = 900 (Fig. 9), on the other 
hand, shows that it is periodic but actually it is apparently multi-periodic as seen in 
Fig. 10(d) for Tr = 900.  
 
6. Conclusions 

A comprehensive numerical study on the fully developed two-dimensional 
flow of viscous incompressible fluid through a rotating curved square duct has been 
performed by using the spectral method, and covering a wide range of the Taylor 
number, 30000 ≤≤ Tr  and the Dean number 30000 ≤< Dn  for two cases of the 
Dean numbers, 1000=Dn  and 2000=Dn . A temperature difference is applied 
across the vertical sidewalls for the Grashof number 500=Gr , where the outer wall 
is heated and the inner one cooled. First, steady solutions are obtained and then in 
order to study the nonlinear behavior of the unsteady solutions time evolution 
calculations are performed.   

After a comprehensive survey over the range of the parameters, we obtained 
two branches of asymmetric steady solutions with two-, three- and four-vortex 
solutions for the rotating curved square duct flows for 1000=Dn and 500=Gr . 
Then we performed time evolution calculation of the unsteady solutions, and it is 
found that the unsteady flow becomes multi-periodic oscillation before turning to 
steady state. Then we investigated flow characteristics for 2000=Dn , and we 
obtained four branches steady solutions with the same number of vortices but 
different in nature in the formation of secondary vortices at the cross section of the 
duct. In order to study the non-linear behavior of the unsteady solutions, we then 
performed time-evolution calculations as well as phase spaces of the solutions in the 
unstable region, and it is found that unsteady flow turns into steady-stable in the 
scenario “periodic→ chaotic→multi-periodic→ steady-stable”, if Tr is increased. 
Drawing the phase spaces was found to be more fruitful for the investigation of 
unsteady flow behavior. In this regard, it should be noted that irregular oscillation of 
the flow through a curved duct has been observed experimentally by Ligrani and 
Niver [13] for the large aspect ratio and by Wang and Yang [18] for the curved 
square duct flow. 
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