Some Properties of Modular *n*-Ideals of a Lattice

M. Ayub Ali¹ and A.S.A. Noor²

¹Department of Mathematics, Jagannath University, Dhaka, Bangladesh E-mail:drayubali.math@gmail.com

²Department of ECE, East West University, Mohakhali, Dhaka, Bangladesh E-mail: noor@ewubd.edu

Received March 4, 2010; accepted October 25, 2010

ABSTRACT

An ideal M of a lattice L is called a modular ideal if for all ideals $I, J \in I(L)$ with $J \subseteq I$, the relation $I \cap (M \lor J) = (I \cap M) \lor J$ is satisfied. In this paper the authors have introduced the notion of modular n-ideals of a lattice. They have given several characterizations and properties of modular n-ideals when n is a neutral element in lattice L. They proved that the principal n-ideal $\langle s \rangle_n$ is a modular n-ideal if and only if $s \land n$ and $s \lor n$ are modular elements in (n] and [n) respectively. Finally, they have characterized modular n-ideals with the help of relative n-annihilators.

Keywords: Modular n-ideal, Neutral element, Principal n-ideal, Relative annihilators, Relative n-annihilators

1. Introduction

Distributive, standard and neutral elements (ideals) of a lattice were studied extensively by Gratzer and Schmidt in [3], also see [2]. These elements are needed to study a larger class of non-distributive lattices. Again Talukder and Noor have introduced the notion of modular elements and ideals in [11] and [12] for directed below join semi lattices. On the other hand Noor and Latif have studied the standard n-ideals of a lattice in [9]. In a very recent paper [1] have studied the distributive n-ideals of a lattice. In this paper we have introduced the concept of modular n-ideals of a lattice and have included some of their characterizations.

An element m of a lattice L is called *modular* if for all $x, y \in L$ with $y \le x$, $x \land (m \lor y) = (x \land m) \lor y$. On the other hand, Malliah and Bhatta in [5] have called an element m of a lattice modular if for all $x, y \in L$ with $x \le y$,

 $x \wedge m = y \wedge m$ and $x \vee m = y \vee m$ imply that x = y. It is easy to see that both the definitions are equivalent.

An ideal I of a lattice L is called *modular* if it is a modular element of the ideal lattice I(L). In [11] and [12] authors have given several characterizations of modular elements and modular ideals of a lattice.

By [2,3] an element s of a lattice L is called a *standard element* if $x \land (y \lor s) = (x \land y) \lor (x \land s)$ for all $x, y \in L$. It is called *neutral* if

(i) s is standard in L and

(ii) $s \land (x \lor y) = (s \land x) \lor (s \land y)$ for all $x, y \in L$.

s is called a *central element* if it is neutral and complemented in each interval containing it.

For a fixed element n of a lattice L, a convex sublattice containing n is called an n-*ideal*. The idea of n-ideals is a kind of generalizations of both ideals and filters of a lattice. The set of all n-ideals of a lattice L is denoted by $I_n(L)$, which is an algebraic lattice under set-inclusion. Moreover, $\{n\}$ and L are respectively the smallest and the largest elements of $I_n(L)$.

For any two n-ideals I and J of L, it is easy to check that $I \wedge J = I \cap J = \{x \in L : x = m(i, n, j) \text{ for some } i \in I, j \in J\}$, where $m(x, y, z) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)$ and $I \vee J = \{x \in L : i_1 \wedge j_1 \le x \le i_2 \vee j_2 \text{ , for some } i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}$.

The n-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a *finitely generated* n-*ideal*, denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover,

 $\langle a_1, a_2, ..., a_m \rangle_n$ is the interval

 $[a_1 \wedge a_2 \wedge ... \wedge a_m \wedge n, a_1 \vee a_2 \vee ... \vee a_m \vee n]$. The n-ideal generated by a single element a is called a *principal* n-*ideal*, denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \wedge n, a \vee n]$.

The set of all principal n-ideals of a lattice L is denoted by $P_n(L)$. By [4] for a standard element $n \in L$, $P_n(L)$ is a meet semi lattice and $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a, n, b) \rangle_n$. $P_n(L)$ is not necessarily a lattice. But if n is central, then $P_n(L)$ is a lattice. For detailed literature on n-ideals we refer the reader to consult [4], [8] and [9].

2. Modular n-Ideals of a Lattice

An n-ideal M of a lattice L is called a modular n-ideal if it is a modular element of the lattice $I_n(L)$. In other words M is called modular if for all $I, J \in I_n(L)$ with $J \subseteq I, I \cap (M \lor J) = (I \cap M) \lor J$.

We know from [11] that a lattice L is modular if and only if its every element is modular. Also from [4], we know that for a neutral element n of a lattice L, L is modular if and only if $I_n(L)$ is so. Thus, for a neutral element n, the lattice L is modular if and only if its every n-ideal is modular.

Following result gives a characterization of modular n-ideals of a lattice.

Theorem 2.1: $M \in I_n(L)$ is modular if and only if for any $a, b \in L$ with $\langle b \rangle_n \subseteq \langle a \rangle_n, \langle a \rangle_n \cap (M \lor \langle b \rangle_n) = (\langle a \rangle_n \cap M) \lor \langle b \rangle_n$.

Proof: Suppose M is modular. Then above relation obviously holds from the definition. Conversely, suppose $\langle a \rangle_n \cap (M \vee \langle b \rangle_n) = (\langle a \rangle_n \cap M) \vee \langle b \rangle_n$ for all $a, b \in L$ with $\langle b \rangle_n \subseteq \langle a \rangle_n$. Let $S, T \in I_n(L)$ with $T \subseteq S$. We need to show that $S \cap (M \vee T) = (S \cap M) \vee T$. Clearly $(S \cap M) \vee T \subseteq S \cap (M \vee T)$. To prove the reverse inclusion let $x \in S \cap (M \vee T)$. Then $x \in S$ and $x \in M \vee T$. Then $m \wedge t \leq x \leq m_1 \vee t_1$ for some $m, m_1 \in M, t, t_1 \in T$. Thus, $x \vee n \leq m_1 \vee t_1 \vee n$ which implies $x \vee n \in \langle m_1 \vee n \rangle_n \vee \langle t_1 \vee n \rangle_n$ $\subseteq M \vee \langle t_1 \vee n \rangle_n$. Moreover, $x \vee n \in \langle x \vee t_1 \vee n \rangle_n$ and $\langle x \vee t_1 \vee n \rangle_n \cap (M \vee \langle t_1 \vee n \rangle_n) = (\langle x \vee t_1 \vee n \rangle_n \cap M) \vee \langle t_1 \vee n \rangle_n) = (\langle x \vee t_1 \vee n \rangle_n \cap M) \vee \langle t_1 \vee n \rangle_n \subseteq (S \cap M) \vee T$. By a dual proof of above we can easily see that $x \wedge n \in (S \cap M) \vee T$, and so M is

modular.

Now we give another characterization of modular n-ideals when n is a neutral element in the lattice.

Therefore 2.2: Suppose n is a neutral element of a lattice L. An n-ideal M is moudular if and only if for any $x \in M \lor \langle y \rangle_n$ with $\langle y \rangle_n \subseteq \langle x \rangle_n$, $x = (x \land m_1) \lor (x \land y) = (x \lor m_2) \land (x \lor y)$ for some $m_1, m_2 \in M$.

Proof: Suppose M is modular and $x \in M \lor \langle y \rangle_n$. Then $x \in \langle x \rangle_n \cap (M \lor \langle y \rangle_n) = (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. This implies $p \land y \land n \le x \le q \lor y \lor n$ for some $p, q \in \langle x \rangle_n \cap M$. By [6], $q \in \langle x \rangle_n \cap M$ implies that $q = (x \land q) \lor (x \land n) \lor (q \land n) = (x \land (q \lor n)) \lor (q \land n)$. Thus, $x \lor n \le (x \land (q \lor n)) \lor y \lor n \le x \lor n$, which implies $x \lor n = (x \land (q \lor n)) \lor y \lor n = (x \land (q \lor n)) \lor (y \land (x \lor n)) \lor n =$ $(x \land (q \lor n)) \lor (x \land y) \lor n$, as n is neutral. Hence by the neutrality of n again, $x = x \land (x \lor n) = x \land [(x \land (q \lor n)) \lor (x \land y) \lor n] =$ $(x \land [(x \land (q \lor n)) \lor (x \land y)]) \lor (x \land n) = (x \land (q \lor n)) \lor (x \land y) \lor (x \land n) =$ $(x \land (q \lor n)) \lor (x \land y)]) \lor (x \land n) = (x \land (q \lor n)) \lor (x \land y) \lor (x \land n) =$ $(x \land (q \lor n)) \lor (x \land y)]$, which is the first relation where $m_1 = q \lor n \in M$. A dual proof of above established the second relation.

Conversely, let $\langle y \rangle_n \subseteq \langle x \rangle_n$. By theorem 2.1, we need to show that $\langle x \rangle_n \cap (M \lor \langle y \rangle_n) = (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. Clearly R.H.S $\subseteq L.H.S$. To prove the reverse inclusion let $t \in \langle x \rangle_n \cap (M \lor \langle y \rangle_n)$. Then $t \in \langle x \rangle_n$ and $t \in M \lor \langle y \rangle_n$. Then $m \land y \land n \leq t \leq m_1 \lor y \lor n$ for some $m, m_1 \in M$. Thus, $t \lor y \lor n \leq m_1 \lor y \lor n$ and so $t \lor y \lor n \in M \lor \langle y \lor n \rangle_n$ and $\langle y \lor n \rangle_n \subseteq \langle t \lor y \lor n \rangle_n$. So by the given condition $t \lor y \lor n = ((t \lor y \lor n) \land m') \lor (y \lor n)$ for some $m' \in M$. Since $t, y \in \langle x \rangle_n$, so $t \lor y \lor n \in \langle x \rangle_n$. Moreover, by the neutrality of n, $((t \lor y \lor n) \land m') \lor (y \lor n) = [(t \lor y \lor n) \land (m' \lor n)] \lor y = m(t \lor y \lor n, n, m') \lor y \in (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. Therefore, $t \lor y \lor n \in (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. By a dual proof we can show that $t \land y \land n \in (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. Thus by the convexity, $t \in (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$. Therefore, $\langle x \rangle_n \cap (M \lor \langle y \rangle_n) = (\langle x \rangle_n \cap M) \lor \langle y \rangle_n$ and so by theorem 2.1, M is modular. \Box

In [5], it has been proved that for a modular ideal M and an arbitrary ideal I if $I \lor M$ and $I \cap M$ are principal, then I is itself principal. Now we generalize this result for modular n-ideals. It should be mentioned that similar result on standard n-ideals has been proved by Noor and Latif in [10].

Theorem 2.3: Let n be a neutral element of a lattice L. Suppose M is a modular nideal and I is any n-ideal of L. If $M \vee I = \langle a \rangle_n$ and $M \cap I = \langle b \rangle_n$, then I is principal.

Proof: Here $M \lor I = \langle a \rangle_n = [a \land n, a \lor n]$, then $a \lor n \le m \lor i$ for some $m \in M$, $i \in I$. Since $m, i \le a \lor n$, so $a \lor n = m \lor i$. Similarly $a \land n = m_1 \land i_1$ for some $m_1 \in M$ and $i_1 \in I$. Again, $M \cap I = \langle b \rangle_n$ implies $a \land n \le b \le a \lor n$. Thus, $\langle a \rangle_n = M \lor I \supseteq M \lor [b \land i_1 \land n, b \lor i \lor n] \supseteq [m_1 \land n, m \lor n] \lor [b \land i_1 \land n,$ $b \lor i \lor n] = [a \land n, a \lor n] = \langle a \rangle_n$. This implies $M \lor I = M \lor [b \land i_1 \land n, b \lor i \lor n]$. On the other hand, $\langle b \rangle_n = M \cap I \supseteq M \cap [b \land i_1 \land n, b \lor i \lor n] \supseteq M \cap \langle b \rangle_n = \langle b \rangle_n$ implies that $M \cap I =$ $M \cap [b \land i_1 \land n, b \lor i \lor n]$. Since $[b \land i_1 \land n, b \lor i \lor n] \subseteq I$, So by the definition of modularity of M in [5], we have $I = [b \land i_1 \land n, b \lor i \lor n]$. Now by [4], we know that for a neutral element n, any finitely generated n-ideal contained in a principal n-ideal is principal. Since $[b \land i_1 \land n, b \lor i \lor n] \subseteq \langle a \rangle_n$, so I is principal. \Box

Theorem 2.4: If M is a modular n-ideal and I is any n-ideal of a lattice L, then $I \cap M$ is also modular in the sublattice I.

Proof: Let *J*, *K* be any two n-ideals contained in I with $K \subseteq J$. Then $J \cap [(I \cap M) \lor K] = J \cap [I \cap (M \lor K)]$, as M is modular and $K \subseteq I$. Thus, $J \cap [(I \cap M) \lor K] = J \cap I \cap (M \lor K) = J \cap (M \lor K) = (J \cap M) \lor K$ (using the modularity of M again) = $(J \cap (I \cap M)) \lor K$. This implies $I \cap M$ is a modular n-ideal in I. \Box

Relative annihilators in lattices have been studied by many authors including Mandelker [6]. For $a, b \in L$, $\langle a, b \rangle = \{x \in L : x \land a \leq b\}$ is known as *annihilator* of a relative to b, or simply a relative

annihilator. In presence of distributivity, $\langle a, b \rangle$ is an ideal of L.

Now we give a characterization of modular element of a lattice using relative annihilators.

Theorem 2.5 : An element $m \in L$ is modular if and only if whenever $b \le a$, $x \in (b]$ and $m \in \langle a, b \rangle$, then $x \lor m \in \langle a, b \rangle$, $a, b, x \in L$.

Proof: Suppose m is modular. Since $m \in \langle a, b \rangle$, so $a \land m \leq b$. Also $x \leq b \leq a$. Thus by modularity of m, $a \land (m \lor x) = (a \land m) \lor x \leq b$. This implies $m \lor x \in \langle a, b \rangle$. Conversely, let the given condition holds. Suppose $x, z \in L$ with $z \leq x$. Then $z \lor (m \land x) \leq x$ and $z \in (z \lor (m \land x)]$. Also, $m \land x \leq z \lor (m \land x)$ implies $m \in \langle x, z \lor (m \land x) \rangle$. Then by the given condition, $z \lor m \in \langle x, z \lor (m \land x) \rangle$. This implies $x \land (z \lor m) \leq (m \land x) \lor z$. Since the reverse inequality is trivial, so m is a modular element. \Box

Theorem 2.6: For an element s of a lattice L, $\langle s \rangle_n$ is modular if and only if $s \wedge n$ and $s \vee n$ are

modular in (n] and [n] respectively.

Proof: Let $s \wedge n$ and $s \vee n$ are modular in (n] and [n] respectively. Suppose $\langle b \rangle_n \subseteq \langle a \rangle_n$, $a, b \in L$. Then $a \land n \le b \land n \le b \lor n \le a \lor n$. So, $\langle a \rangle_n \cap (\langle s \rangle_n \lor \langle b \rangle_n) =$ $[a \land n, a \lor n] \cap [s \land b \land n, s \lor b \lor n] = (a \land n) \lor (s \land b \land n), (a \lor n) \land (s \land b \lor n) =$ $[(b \land n) \land ((s \land n) \lor (a \land n)), ((a \lor n) \land (s \lor n)) \lor (b \lor n)]$. Again, $(\langle a \rangle_n \cap \langle s \rangle_n) \lor \langle b \rangle_n =$ $[(a \land n) \lor (s \land n), (a \lor n) \land (s \lor n)] \lor [b \land n, b \lor n] =$ $[(b \land n) \land ((a \land n) \lor (s \land n)), ((a \lor n) \land (s \lor n)) \lor (b \lor n)]$. Thus $\langle a \rangle_n \cap (\langle s \rangle_n \lor \langle b \rangle_n) =$ $(\langle a \rangle_n \cap \langle s \rangle_n) \lor \langle b \rangle_n$. Hence by Theorem 2.1, $\langle s \rangle_n$ is modular. Conversely let $\langle s \rangle_n$ be modular. Suppose $n \leq b \lor n \leq a \lor n$. Then $< b \lor n > \subseteq < a \lor n >$, and $\langle a \lor n \rangle_n \cap (\langle s \rangle_n \lor \langle b \lor n \rangle_n) = (\langle a \lor n \rangle_n \cap \langle s \rangle_n) \lor \langle b \lor n \rangle_n$. Then by a routine calculation, $[n, (a \lor n) \land (s \lor b \lor n)] = [n, ((a \lor n) \land (s \lor n)) \lor (b \lor n)]$. This implies $(a \lor n) \land ((s \lor n) \lor (b \lor n)) = ((a \lor n) \land (s \lor n)) \lor (b \lor n)$, and so $s \lor n$ is modular in [n]. Similarly $s \land n$ is also modular in (n]. \Box

In [7], Noor and Ayub has introduced the notion of relative n-annihilators. For $a, b \in L$ and a fixed element $n \in L$, $\langle a, b \rangle^n = \{x \in L : m(a, n, x) \in \langle b \rangle_n\} = \{x \in L : b \land n \le m(a, n, x) \le b \lor n\}$ is called *the annihilator of a relative to* b *around the element* n or simply a *relative* n*annihilator*.

It is easy to see that for all $a, b \in L, \langle a, b \rangle^n$ is always a convex subset containing n, but not necessarily an n-ideal. But in presence of distributivity of L,

 $\langle a,b \rangle^n$ is an n-ideal. Moreover $\langle a,b \rangle^n = \langle \langle a \rangle_n, \langle b \rangle_n \rangle$, relative annihilator in $I_n(L)$.

We conclude the paper with the following characterization of modular nideals with the help of relative n-annihilators.

Theorem 2.7: Let n be a neutral element in a lattice L. For an element $s \in L$, the following conditions are equivalent.

i) $\langle s \rangle_n$ is modular, ii) For $\langle b \rangle_n \subseteq \langle a \rangle_n$ and $s \in \langle a, b \rangle^n$ implies $s \wedge x, s \vee x \in \langle a, b \rangle^n$ for all $x \in \langle b \rangle_n$. **Proof:** (i) \Rightarrow (ii). Suppose (i) holds, $\langle b \rangle_n \subseteq \langle a \rangle_n$ and $s \in \langle a, b \rangle^n$. Then by Theorem 2.6, $s \lor n$ is modular in [n]. Also, $m(a,n,s) \in \langle b \rangle_n$. Then $(a \land s) \lor (a \land n) \lor (s \land n) \le b \lor n$, which implies $a \wedge s \leq b \vee n$. Thus, $m(a,n,s \lor b \lor n) = (a \lor n) \land (s \lor b \lor n) = (a \lor n) \land ((s \lor n) \lor (b \lor n)) =$ $((a \lor n) \land (s \lor n)) \lor (b \lor n) = (a \land s) \lor b \lor n = b \lor n$, as n is neutral. Hence $m(a, n, s \lor b \lor n) \in \langle b \rangle_n$, and so $s \lor b \lor n \in \langle a, b \rangle^n$. Again $s \land n$ is modular in [n] So a similar proof shows that $s \wedge b \wedge n \in \langle a, b \rangle^n$. Now for $x \in \langle b \rangle_n$, $b \land n \le x \le b \lor n$. Then $s \land b \land n \le s \land x \le s \lor x \le s \lor b \lor n$ implies $s \wedge x, s \vee x \in \langle a, b \rangle^n$, by convexity. $(ii) \Rightarrow (i)$. Suppose (ii) holds and let $x, z \in [n]$ with $x \le z$. Then $x \lor ((s \lor n) \land z) \le z$, which implies $\langle x \lor ((s \lor n) \land z) \rangle_n \subseteq \langle z \rangle_n$. Now $x \le x \lor ((s \lor n) \land z)$ implies $x \in \langle x \lor ((s \lor n) \land z) \rangle_n$. Again $(s \lor n) \land z) \le x \lor ((s \lor n) \land z)$ implies $m(s \lor n, n, z) = (s \lor n) \land z \in \langle x \lor ((s \lor n) \land z) \rangle_n$. Hence $s \lor n \in \langle z, x \lor ((s \lor n) \land z) \rangle^n$. Thus by (ii), $s \lor n \lor x \in \langle z, x \lor ((s \lor n) \land z) \rangle^n$. That is, $(s \lor n \lor x) \land z \leq x \lor ((s \lor n) \land z)$, which implies $s \lor n$ is modular in [n]. A dual proof of above shows that $s \land n$ is also modular in (n]. Hence by Theorem 2.6, $\langle s \rangle_n$ is modular.

REFERENCES

1. M. Ayub Ali, On distributive n-ideals of a lattice, Submitted to *Journal of Science, Jahangirnagar University, Dhaka.*

- 2. G.Gratzer, 1978, General Lattice theory, Birkhauser verlag, Basel.
- 3. G. Gratzer and E.T. Schmidt, 1961, Standard ideals in lattices, *Acta Math Acad. Sci. Hung 12, 17-86.*
- 4. M.A. Latif and A.S.A Noor, 1994, n-ideals of a lattice, *The Rajshahi University Studies (Part B), 22, 173-180.*
- 5. C. Malliah and S.Bhatta, 1986, A generalization of distributive ideals to convex sublattices, *Acta, Math. Hung 48(1-2), 73-77.*
- 6. M. Mandelker, 1970, Relative annihilators in lattices, *Duke Math. J. 40, 377-386*.
- 7. A.S.A.Noor and M.Ayub Ali, 2000, Relative annihilators around a neutral element of a lattice, *The Rajshahi University studies(part B), 28, 141-146.*
- 8. A.S.A Noor and M.A. Latif, 1998, Finitely generated n-ideals of a lattice, SEA Bull, Math. 22, 73-79.
- 9. A.S.A Noor and M.A. Latif, 1997, Standard n-ideals of a lattice, SEA Bull. Math. 4, 185-192.
- 10. A.S.A Noor and M.A. Latif, 2000, Properties of standard of n-ideals of a lattice, *SEA Bull. Math. 24, 1-7.*
- 11. M.R. Talukder and A.S.A Noor, 1997, Standard ideals of a join semi lattice directed below, SEA Bull. Math. 21(4), 435-438.
- 12. M.R. Talukder and A.S.A Noor, 1998, Modular ideals of a join semi lattice directed below, *SEA Bull. Math. 22, 215-218.*