Some Properties of Modular \boldsymbol{n}-Ideals of a Lattice

M. Ayub Ali ${ }^{1}$ and A.S.A. Noor ${ }^{2}$
${ }^{1}$ Department of Mathematics, Jagannath University, Dhaka, Bangladesh
E-mail:drayubali.math@gmail.com
${ }^{2}$ Department of ECE, East West University, Mohakhali, Dhaka, Bangladesh
E-mail: noor@ewubd.edu

Received March 4, 2010; accepted October 25, 2010

Abstract

An ideal M of a lattice L is called a modular ideal if for all ideals $I, J \in I(L)$ with $J \subseteq I$, the relation $I \cap(M \vee J)=(I \cap M) \vee J$ is satisfied. In this paper the authors have introduced the notion of modular n-ideals of a lattice. They have given several characterizations and properties of modular n-ideals when n is a neutral element in lattice L. They proved that the principal n -ideal $\langle s\rangle_{n}$ is a modular nideal if and only if $s \wedge n$ and $s \vee n$ are modular elements in (n] and [n) respectively. Finally, they have characterized modular n-ideals with the help of relative n-annihilators.

Keywords: Modular n-ideal, Neutral element, Principal n-ideal, Relative annihilators, Relative n -annihilators

1. Introduction

Distributive, standard and neutral elements (ideals) of a lattice were studied extensively by Gratzer and Schmidt in [3], also see [2]. These elements are needed to study a larger class of non-distributive lattices. Again Talukder and Noor have introduced the notion of modular elements and ideals in [11] and [12] for directed below join semi lattices. On the other hand Noor and Latif have studied the standard n-ideals of a lattice in [9]. In a very recent paper [1] have studied the distributive nideals of a lattice. In this paper we have introduced the concept of modular n-ideals of a lattice and have included some of their characterizations.

An element m of a lattice L is called modular if for all $x, y \in L$ with $y \leq x, x \wedge(m \vee y)=(x \wedge m) \vee y$. On the other hand, Malliah and Bhatta in [5] have called an element m of a lattice modular if for all $x, y \in L$ with $x \leq y$,
$x \wedge m=y \wedge m$ and $x \vee m=y \vee m$ imply that $x=y$. It is easy to see that both the definitions are equivalent.

An ideal I of a lattice L is called modular if it is a modular element of the ideal lattice $\mathrm{I}(\mathrm{L})$. In [11] and [12] authors have given several characterizations of modular elements and modular ideals of a lattice.

By $[2,3]$ an element s of a lattice L is called a standard element if $x \wedge(y \vee s)=(x \wedge y) \vee(x \wedge s)$ for all $x, y \in L$. It is called neutral if
(i) s is standard in L and
(ii) $s \wedge(x \vee y)=(s \wedge x) \vee(s \wedge y)$ for all $x, y \in L$.
s is called a central element if it is neutral and complemented in each interval containing it.

For a fixed element n of a lattice L , a convex sublattice containing n is called an n-ideal. The idea of n-ideals is a kind of generalizations of both ideals and filters of a lattice. The set of all n -ideals of a lattice L is denoted by $I_{n}(L)$, which is an algebraic lattice under set-inclusion. Moreover, $\{n\}$ and L are respectively the smallest and the largest elements of $I_{n}(L)$.

For any two n-ideals I and J of L, it is easy to check that $I \wedge J=I \cap J=\{x \in L: x=m(i, n, j) \quad$ for \quad some $i \in I, j \in J\}$, where $m(x, y, z)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ and $I \vee J=\left\{x \in L: i_{1} \wedge j_{1} \leq x \leq i_{2} \vee j_{2}\right.$, for some $i_{1}, i_{2} \in I$ and $\left.j_{1}, j_{2} \in J\right\}$.

The n -ideal generated by a finite numbers of elements $a_{1}, a_{2}, \ldots, a_{m}$ is called a finitely generated n -ideal, denoted by $\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle_{n}$. Moreover, $<a_{1}, a_{2}, \ldots, a_{m}>_{n}$ is the interval
$\left[a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m} \wedge n, a_{1} \vee a_{2} \vee \ldots \vee a_{m} \vee n\right]$. The n-ideal generated by a single element a is called a principal n-ideal, denoted by $\langle a\rangle_{n}$ and $<a>_{n}=[a \wedge n, a \vee n]$.

The set of all principal n -ideals of a lattice L is denoted by $P_{n}(L)$. By [4] for a standard element $n \in L, P_{n}(L)$ is a meet semi lattice and $\langle a\rangle_{n} \cap\langle b\rangle_{n}=\langle m(a, n, b)\rangle_{n} . P_{n}(L)$ is not necessarily a lattice. But if n is central, then $P_{n}(L)$ is a lattice. For detailed literature on n-ideals we refer the reader to consult [4], [8] and [9].

2. Modular n-Ideals of a Lattice

An n -ideal M of a lattice L is called a modular n -ideal if it is a modular element of the lattice $I_{n}(L)$. In other words M is called modular if for all $I, J \in I_{n}(L)$ with $J \subseteq I, I \cap(M \vee J)=(I \cap M) \vee J$.

We know from [11] that a lattice L is modular if and only if its every element is modular. Also from [4], we know that for a neutral element n of a lattice L, L is modular if and only if $I_{n}(L)$ is so. Thus, for a neutral element n , the lattice L is modular if and only if its every n -ideal is modular.

Following result gives a characterization of modular n-ideals of a lattice.
Theorem 2.1: $M \in I_{n}(L)$ is modular if and only if for any $a, b \in L$ with $\left.\left.\langle b\rangle_{n} \subseteq<a\right\rangle_{n},\langle a\rangle_{n} \cap(M \vee<b\rangle_{n}\right)=\left(\langle a\rangle_{n} \cap M\right) \vee\langle b\rangle_{n}$.

Proof: Suppose M is modular. Then above relation obviously holds from the definition. Conversely, suppose $\langle a\rangle_{n} \cap\left(M \vee\langle b\rangle_{n}\right)=\left(\langle a\rangle_{n} \cap M\right) \vee\langle b\rangle_{n}$ for all $a, b \in L$ with $\langle b\rangle_{n} \subseteq\langle a\rangle_{n}$. Let $S, T \in I_{n}(L)$ with $T \subseteq S$. We need to show that $S \cap(M \vee T)=(S \cap M) \vee T$. Clearly $(S \cap M) \vee T \subseteq S \cap(M \vee T)$. To prove the reverse inclusion let $x \in S \cap(M \vee T)$. Then $x \in S$ and $x \in M \vee T$.
Then $m \wedge t \leq x \leq m_{1} \vee t_{1}$ for some $m, m_{1} \in M, t, t_{1} \in T$. Thus,
$x \vee n \leq m_{1} \vee t_{1} \vee n$ which implies $x \vee n \in\left\langle m_{1} \vee n>_{n} \vee<t_{1} \vee n\right\rangle_{n}$
$\subseteq M \vee<t_{1} \vee n>_{n}$. Moreover, $x \vee n \in\left\langle x \vee t_{1} \vee n>_{n}\right.$ and
$\left.<x \vee t_{1} \vee n\right\rangle_{n} \supseteq<t_{1} \vee n>_{n}$. Hence by the given condition,
$x \vee n \in\left\langle x \vee t_{1} \vee n>_{n} \cap\left(M \vee<t_{1} \vee n>_{n}\right)=\right.$
$\left(<x \vee t_{1} \vee n>_{n} \cap M\right) \vee<t_{1} \vee n>_{n} \subseteq(S \cap M) \vee T$.
By a dual proof of above we can easily see that $x \wedge n \in(S \cap M) \vee T$. Thus by convexity $x \in(S \cap M) \vee T$. Therefore, $S \cap(M \vee T)=(S \cap M) \vee T$, and so M is modular.

Now we give another characterization of modular n-ideals when n is a neutral element in the lattice.

Therefore 2.2: Suppose n is a neutral element of a lattice L. An n -ideal M is moudular if and only if for any $x \in M \vee\langle y\rangle_{n}$ with $\langle y\rangle_{n} \subseteq\langle x\rangle_{n}$, $x=\left(x \wedge m_{1}\right) \vee(x \wedge y)=\left(x \vee m_{2}\right) \wedge(x \vee y)$ for some $m_{1}, m_{2} \in M$.

Proof: Suppose M is modular and $x \in M \vee\langle y\rangle_{n}$. Then
$x \in\left\langle x>_{n} \cap(M \vee<y\rangle_{n}\right)=\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$. This implies
$p \wedge y \wedge n \leq x \leq q \vee y \vee n$ for some $p, q \in\left\langle x>_{n} \cap M\right.$. By [6],
$q \in\langle x\rangle_{n} \cap M$ implies that
$q=(x \wedge q) \vee(x \wedge n) \vee(q \wedge n)=(x \wedge(q \vee n)) \vee(q \wedge n)$. Thus,
$x \vee n \leq(x \wedge(q \vee n)) \vee y \vee n \leq x \vee n$, which implies
$x \vee n=(x \wedge(q \vee n)) \vee y \vee n=(x \wedge(q \vee n)) \vee(y \wedge(x \vee n)) \vee n=$
$(x \wedge(q \vee n)) \vee(x \wedge y) \vee n$, as n is neutral. Hence by the neutrality of n again, $x=x \wedge(x \vee n)=x \wedge[(x \wedge(q \vee n)) \vee(x \wedge y) \vee n]=$ $(x \wedge[(x \wedge(q \vee n)) \vee(x \wedge y)]) \vee(x \wedge n)=(x \wedge(q \vee n)) \vee(x \wedge y) \vee(x \wedge n)=$ $(x \wedge(q \vee n)) \vee(x \wedge y)$, which is the first relation where $m_{1}=q \vee n \in M$. A dual proof of above established the second relation.

Conversely, let $\langle y\rangle_{n} \subseteq\langle x\rangle_{n}$. By theorem 2.1, we need to show that $\left.\langle x\rangle_{n} \cap(M \vee<y\rangle_{n}\right)=\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$. Clearly R.H.S \subseteq L.H.S. To prove the reverse inclusion let $\left.t \in\langle x\rangle_{n} \cap(M \vee<y\rangle_{n}\right)$. Then $t \in\langle x\rangle_{n}$ and $t \in M \vee<y>_{n}$. Then $m \wedge y \wedge n \leq t \leq m_{1} \vee y \vee n$ for some $m, m_{1} \in M$.
Thus, $t \vee y \vee n \leq m_{1} \vee y \vee n$ and so $t \vee y \vee n \in M \vee<y \vee n>_{n}$ and $\left\langle y \vee n>_{n} \subseteq<t \vee y \vee n>_{n}\right.$. So by the given condition
$t \vee y \vee n=\left((t \vee y \vee n) \wedge m^{\prime}\right) \vee(y \vee n)$ for some $m^{\prime} \in M$. Since $t, y \in\left\langle x>_{n}\right.$, so $t \vee y \vee n \in\langle x\rangle_{n}$. Moreover, by the neutrality of n ,
$\left((t \vee y \vee n) \wedge m^{\prime}\right) \vee(y \vee n)=\left[(t \vee y \vee n) \wedge\left(m^{\prime} \vee n\right)\right] \vee y=$
$m\left(t \vee y \vee n, n, m^{\prime}\right) \vee y \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$. Therefore,
$t \vee y \vee n \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$. By a dual proof we can show that $t \wedge y \wedge n \in\left(\langle x\rangle_{n} \cap M\right) \vee\langle y\rangle_{n}$. Thus by the convexity, $\left.t \in\left(\langle x\rangle_{n} \cap M\right) \vee<y\right\rangle_{n}$. Therefore, $<x>_{n} \cap\left(M \vee<y>_{n}\right)=\left(<x>_{n} \cap M\right) \vee<y>_{n}$ and so by theorem 2.1, M is modular.

In [5], it has been proved that for a modular ideal M and an arbitrary ideal I if $I \vee M$ and $I \cap M$ are principal, then I is itself principal. Now we generalize this result for modular n -ideals. It should be mentioned that similar result on standard n ideals has been proved by Noor and Latif in [10].

Theorem 2.3: Let n be a neutral element of a lattice L . Suppose M is a modular n ideal and I is any n -ideal of L . If $M \vee I=\left\langle a>_{n}\right.$ and $M \cap I=\langle b\rangle_{n}$, then I is principal.

Proof: Here $M \vee I=\langle a\rangle_{n}=[a \wedge n, a \vee n]$, then $a \vee n \leq m \vee i$ for some $m \in M, i \in I$. Since $m, i \leq a \vee n$, so $a \vee n=m \vee i$. Similarly $a \wedge n=m_{1} \wedge i_{1}$ for some $m_{1} \in M$ and $i_{1} \in I$. Again,
$M \cap I=_{n}$ implies $a \wedge n \leq b \leq a \vee n$. Thus,
$<a>_{n}=M \vee I \supseteq M \vee\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right] \supseteq\left[m_{1} \wedge n, m \vee n\right] \vee\left[b \wedge i_{1} \wedge n\right.$,
$b \vee i \vee n]=[a \wedge n, a \vee n]=\langle a\rangle_{n}$. This implies
$M \vee I=M \vee\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right]$. On the other hand,
$_{n}=M \cap I \supseteq M \cap\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right] \supseteq M \cap_{n}=\left\langle b>_{n}\right.$ implies that $M \cap I=$
$M \cap\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right]$. Since $\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right] \subseteq I$, So by the definition of modularity of M in [5], we have $I=\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right]$. Now by [4], we know that for a neutral element n , any finitely generated n -ideal contained in a principal n -ideal is principal. Since $\left[b \wedge i_{1} \wedge n, b \vee i \vee n\right] \subseteq<a>_{n}$, so I is principal.

Theorem 2.4: If M is a modular n -ideal and I is any n -ideal of a lattice L , then $I \cap M$ is also modular in the sublattice I .
Proof: Let J, K be any two n-ideals contained in I with $K \subseteq J$. Then
$J \cap[(I \cap M) \vee K]=J \cap[I \cap(M \vee K)]$, as M is modular and $K \subseteq I$. Thus,
$J \cap[(I \cap M) \vee K]=J \cap I \cap(M \vee K)=J \cap(M \vee K)=(J \cap M) \vee K$ (using the modularity of M again $)=(J \cap(I \cap M)) \vee K$. This implies $I \cap M$ is a modular nideal in I.

Relative annihilators in lattices have been studied by many authors including Mandelker [6]. For $a, b \in L,\langle a, b\rangle=\{x \in L: x \wedge a \leq b\}$ is known as annihilator of a relative to b , or simply a relative
annihilator. In presence of distributivity, $\langle a, b\rangle$ is an ideal of L .
Now we give a characterization of modular element of a lattice using relative annihilators.

Theorem 2.5 : An element $m \in L$ is modular if and only if whenever $b \leq a, x \in(b]$ and $m \in\langle a, b\rangle$, then $x \vee m \in\langle a, b\rangle, a, b, x \in L$.

Proof: Suppose m is modular. Since $m \in<a, b>$, so $a \wedge m \leq b$. Also $x \leq b \leq a$. Thus by modularity of m, $a \wedge(m \vee x)=(a \wedge m) \vee x \leq b$. This implies $m \vee x \in\langle a, b\rangle$. Conversely, let the given condition holds. Suppose $x, z \in L$ with $z \leq x$. Then $z \vee(m \wedge x) \leq x$ and $z \in(z \vee(m \wedge x)]$. Also, $m \wedge x \leq z \vee(m \wedge x)$ implies $m \in\langle x, z \vee(m \wedge x)\rangle$. Then by the given condition, $z \vee m \in<x, z \vee(m \wedge x)>$. This implies $x \wedge(z \vee m) \leq(m \wedge x) \vee z$. Since the reverse inequality is trivial, so m is a modular element.

Theorem 2.6: For an element s of a lattice $\mathrm{L},\langle s\rangle_{n}$ is modular if and only if $s \wedge n$ and $s \vee n$ are
modular in (n] and $[n$) respectively.
Proof: Let $s \wedge n$ and $s \vee n$ are modular in (n] and $[n$) respectively. Suppose

$$
\left._{n} \subseteq<a\right\rangle_{n}
$$

$$
a, b \in L \text {. Then } a \wedge n \leq b \wedge n \leq b \vee n \leq a \vee n \text {. So, }\left\langle a>_{n} \cap\left(<s>_{n} \vee_{n}\right)=\right.
$$

$$
[a \wedge n, a \vee n] \cap[s \wedge b \wedge n, s \vee b \vee n]=(a \wedge n) \vee(s \wedge b \wedge n),(a \vee n) \wedge(s \wedge b \vee n)=
$$

$$
[(b \wedge n) \wedge((s \wedge n) \vee(a \wedge n)),((a \vee n) \wedge(s \vee n)) \vee(b \vee n)] \text {. Again, }
$$

$$
\left(<a>_{n} \cap<s>_{n}\right) \vee_{n}=
$$

$$
[(a \wedge n) \vee(s \wedge n),(a \vee n) \wedge(s \vee n)] \vee[b \wedge n, b \vee n]=
$$

$$
[(b \wedge n) \wedge((a \wedge n) \vee(s \wedge n)),((a \vee n) \wedge(s \vee n)) \vee(b \vee n)] \text {. Thus }
$$

$$
<a>_{n} \cap\left(<s>_{n} \vee_{n}\right)=
$$

$$
\left(\langle a\rangle_{n} \cap\langle s\rangle_{n}\right) \vee\langle b\rangle_{n} . \text { Hence by Theorem 2.1, }\langle s\rangle_{n} \text { is modular. }
$$

Conversely let $\langle s\rangle_{n}$ be modular. Suppose $n \leq b \vee n \leq a \vee n$. Then
$\langle b \vee n>\subseteq\langle a \vee n>$, and
$\left.\langle a \vee n\rangle_{n} \cap\left(\left\langle s>_{n} \vee<b \vee n\right\rangle_{n}\right)=\left(\langle a \vee n\rangle_{n} \cap\langle s\rangle_{n}\right) \vee<b \vee n\right\rangle_{n}$. Then by a routine calculation, $[n,(a \vee n) \wedge(s \vee b \vee n)]=[n,((a \vee n) \wedge(s \vee n)) \vee(b \vee n)]$. This implies $(a \vee n) \wedge((s \vee n) \vee(b \vee n))=((a \vee n) \wedge(s \vee n)) \vee(b \vee n)$, and so $s \vee n$ is modular in [n). Similarly $s \wedge n$ is also modular in (n].

In [7], Noor and Ayub has introduced the notion of relative n-annihilators. For and a fixed element $a, b \in L$ a $n \in L$, $<a, b>^{n}=\left\{x \in L: m(a, n, x) \in\left\langle b>_{n}\right\}=\{x \in L: b \wedge n \leq m(a, n, x) \leq b \vee n\} \quad\right.$ is called the annihilator of a relative to b around the element n or simply a relative n annihilator.

It is easy to see that for all $a, b \in L,\langle a, b\rangle^{n}$ is always a convex subset containing n , but not necessarily an n -ideal. But in presence of distributivity of L ,
$\langle a, b\rangle^{n}$ is an n-ideal. Moreover $\langle a, b\rangle^{n}=\left\langle\langle a\rangle_{n},\langle b\rangle_{n}\right\rangle$, relative annihilator in $I_{n}(L)$.

We conclude the paper with the following characterization of modular n ideals with the help of relative n -annihilators.

Theorem 2.7: Let n be a neutral element in a lattice L . For an element $s \in L$, the following conditions are equivalent.
i) $\langle s\rangle_{n}$ is modular,
ii) For $\langle b\rangle_{n} \subseteq\langle a\rangle_{n}$ and $s \in\langle a, b\rangle^{n}$ implies
$s \wedge x, s \vee x \in<a, b>^{n}$ for all $\quad x \in\langle b\rangle_{n}$.
Proof: $(i) \Rightarrow$ (ii). Suppose (i) holds, $\langle b\rangle_{n} \subseteq\langle a\rangle_{n}$ and $s \in\langle a, b\rangle^{n}$.Then by Theorem 2.6, $s \vee n$ is modular in $[n)$. Also, $m(a, n, s) \in\langle b\rangle_{n}$. Then $(a \wedge s) \vee(a \wedge n) \vee(s \wedge n) \leq b \vee n$, which implies
$a \wedge s \leq b \vee n$. Thus,
$m(a, n, s \vee b \vee n)=(a \vee n) \wedge(s \vee b \vee n)=(a \vee n) \wedge((s \vee n) \vee(b \vee n))=$ $((a \vee n) \wedge(s \vee n)) \vee(b \vee n)=(a \wedge s) \vee b \vee n=b \vee n$, as n is neutral. Hence $m(a, n, s \vee b \vee n) \in\left\langle b>_{n}\right.$, and so $s \vee b \vee n \in\left\langle a, b>^{n}\right.$. Again $s \wedge n$ is modular in ($n]$. So a similar proof shows that $s \wedge b \wedge n \in\left\langle a, b>^{n}\right.$. Now for $x \in\langle b\rangle_{n}$, $b \wedge n \leq x \leq b \vee n$. Then $s \wedge b \wedge n \leq s \wedge x \leq s \vee x \leq s \vee b \vee n$ implies $s \wedge x, s \vee x \in\left\langle a, b>^{n}\right.$, by convexity.
(ii) $\Rightarrow(i)$. Suppose (ii) holds and let $x, z \in[n)$ with $x \leq z$. Then $x \vee((s \vee n) \wedge z) \leq z$, which implies $\left\langle x \vee((s \vee n) \wedge z)>_{n} \subseteq\langle z\rangle_{n}\right.$. Now $x \leq x \vee((s \vee n) \wedge z)$ implies $x \in\left\langle x \vee((s \vee n) \wedge z)>_{n}\right.$. Again $(s \vee n) \wedge z) \leq x \vee((s \vee n) \wedge z)$ implies $m(s \vee n, n, z)=(s \vee n) \wedge z \in<x \vee((s \vee n) \wedge z)>_{n}$. Hence $s \vee n \in<z, x \vee((s \vee n) \wedge z)>^{n}$. Thus by (ii),
$s \vee n \vee x \in<z, x \vee((s \vee n) \wedge z)>^{n}$. That is, $\quad(s \vee n \vee x) \wedge z \leq x \vee((s \vee n) \wedge z)$, which implies $s \vee n$ is modular in $[n)$. A dual proof of above shows that $s \wedge n$ is also modular in $(n]$. Hence by Theorem 2.6, $\langle s\rangle_{n}$ is modular.

REFERENCES

1. M. Ayub Ali, On distributive n-ideals of a lattice, Submitted to Journal of Science, Jahangirnagar University, Dhaka.
2. G.Gratzer, 1978, General Lattice theory, Birkhauser verlag, Basel.
3. G. Gratzer and E.T. Schmidt, 1961, Standard ideals in lattices, Acta Math Acad. Sci. Hung 12, 17-86.
4. M.A. Latif and A.S.A Noor, 1994, n-ideals of a lattice, The Rajshahi University Studies (Part B), 22, 173-180.
5. C. Malliah and S.Bhatta, 1986, A generalization of distributive ideals to convex sublattices, Acta, Math. Hung 48(1-2), 73-77.
6. M. Mandelker, 1970, Relative annihilators in lattices, Duke Math. J. 40, 377386.
7. A.S.A.Noor and M.Ayub Ali, 2000, Relative annihilators around a neutral element of a lattice, The Rajshahi University studies(part B), 28, 141-146.
8. A.S.A Noor and M.A. Latif, 1998, Finitely generated n-ideals of a lattice, $S E A$ Bull, Math. 22, 73-79.
9. A.S.A Noor and M.A. Latif, 1997, Standard n-ideals of a lattice, SEA Bull. Math. 4, 185-192.
10. A.S.A Noor and M.A. Latif, 2000, Properties of standard of n-ideals of a lattice, SEA Bull. Math. 24, 1-7.
11. M.R. Talukder and A.S.A Noor, 1997, Standard ideals of a join semi lattice directed below, SEA Bull. Math. 21(4), 435-438.
12. M.R. Talukder and A.S.A Noor, 1998, Modular ideals of a join semi lattice directed below, SEA Bull. Math. 22, 215-218.
