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ABSTRACT 

Based on masked data and multiple type-II censoring model, the likelihood function 
of the samples is investigated using probit analysis method. The maximum likelihood 
method is used to obtain the estimations. Meanwhile, two numerical simulation 
examples are given to illustrate how one can utilize the theoretical results to tackle 
the practical problem and study the influence of the observed number and masking 
level on the accuracy of the estimations. 
Keywords � masked data; multiple type-II censoring; probit analysis method; 
Maximum likelihood estimation; numerical simulation 
 
1. Introduction.  

Life data from multi-components systems are often analyzed to estimate the 
reliability of each component. These estimations are extremely useful since they can 
reflect components’ reliability after the components are assembled into an 
operational system. Under appropriate conditions, these estimations can be used to 
predict the reliability of new configuration of components. 

Consider a system of components connected in series. Due to some certain 
environmental conditions, the exact component which causes the system failure 
might be unknown. Instead, it is assumed that it belongs to some subset of the 
components which is considered potentially responsible for the failure. In this case, 
the cause of failure is masked. 
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Various studies have used masked data to estimate the unknown life-parameters 
and reliabilities of the system components. For example, [1] and [2] considered the 
maximum likelihood estimations (MLE) of exponential components, and [3] deduced 
the Bayes estimations. [4] presented MLE of unknown parameters of Weibull 
components for the cases of two-component and three-component series systems. 
Lynn Kuo and Tae Young Yang[5] obtained the Bayes estimations of Weibull 
components. For geometric components and pareto components, A.M. Sarhan 
considered the estimations of parameters in [6] and [7] respectively. [8] discussed the 
case of parallel systems of complementary exponential components. 

In those studies, most of authors made the assumption that the test to be 
terminated when all the systems failed and the available sample is not censored. 
However, in some experiments and data collecting process, the failure of some 
systems may not be observed due to restrictions on data collection, experimental 
difficulties or some other extraordinary reasons. Using type-II censoring sample, the 
reliability estimations of geometric components[9] and Weibull components[10] have 
been presented. Here we consider a kind of censoring type named multiple type-II 
censoring, which may arise in practice, such as, in life tests when the failure times of 
some systems were not observed due to mechanical difficulties and so on. Another 
situation which multiple type-II censoring arise naturally is that some systems failed 
between two points of observation with exact failure times of these systems 
unobserved. 

In this paper, masked life data from multiple type-II censoring test was used to 
derive the maximum likelihood estimations of components’ life-parameters. In 
section 2, a general likelihood function of samples for J -components series system 
is developed. In section 3, we explore its use for the special case when components’ 
lifetimes are exponentially distributed. In section 4, several numerical examples were 
given to illustrate the use of the method. 
 
2. Likelihood Function. 

Suppose n  systems placed on the life test and the test terminates when all 
systems fail. Each of these systems is assumed to be a series system of J  
independent components. Let ( 1,2, , )iT i n= " denote the lifetime of system i  and 

( 1, 2, , )ijT j J= "  denote the lifetime of component j  in system i . That is, 

1min{ , , }i i iJT T T= " . For a fixed ( 1,2, , )j j J= " , the random variables 1 2, , ,j j njT T T"  
are independent and identically distributed. Let )(tf j  and )(tFj  denote the 
probability density function (PDF) and survival function (SF) of the lifetime of 
component j  with parameter vector jθ . 

Assume that we only observed the 1 2th, th, , thkr r r"  systems’ failure 
times

1 21 2, , ,
kr r k ry T y T y T= = =" . Suppose these data satisfy 1 2 ky y y< < <" . In 

addition, for each of these systems, we observed set of labels of the components that 
include the exact component which causes the system failure. Let ( 1, , )

ir
S i k= "  



Estimations of components’ life-parameters under multiple type-II  
censoring using masked data 

 

119 

denote the set of components that may cause the thir  system failure. Thus, the 
observable quantity for the thir  system is ( , )

i ir rT S . Thus, the multiple type-II 
censored samples are

1 21 2( , ), ( , ), , ( , )
kr r k ry S y S y S" . It is also assumed that masking 

occurs independently of the cause of failure. 
Next we use probit analysis method to derive the likelihood function. Note that 

1 1 1 1 1 1 2( , ) ( , ) [ , d ) [ d , ) [ , d ) [ d , )k k k k ky y y y y y y y y y y y−∞ +∞ = −∞ + + + + +∞∪ ∪ ∪"∪ ∪  
We divide the number axis into four parts using the multiple type-II censored 

data: 

(I) ),( 1y−∞ ; (II)
1

[ , d )
k

j j j
j

y y y
=

+∪ ; (III)
1

1
1

[ d , )
k

j j j
j

y y y
−

+
=

+∪ ; (IV)[ d , )k ky y+ +∞  

In the following, we will analyze each part to derive the likelihood function. 
(I)There are 1 1r −  systems failing in this part. Suppose that the thi  system 

failed in this part, that is, 
11i rT y T< = . The probability of this event is: 

1 1 1 2 1

1 1 2 1 1 11

( ) 1 ( ) 1 (min( , , , ) )

               1 ( , , , ) 1 ( ; )

i i i i iJ

J

i i iJ j jj

P T y P T y P T T T y

P T y T y T y F y θ
=

< = − ≥ = − ≥

= − ≥ ≥ ≥ = − Π

"

"
 

So the total probability in this part is 

                 1 1
1 11

[1 ( ; )]
J

r
j jj

I F y θ −

=
= − Π                      (1) 

 (II) There are k  systems failing in this part, and the th( 1, , )jr j k= "  system 
failed in[ , d )j j jy y y+ , the probability of this event is: 

1 ( 1)

( 1)

( d ) ( d , , , ,

                                       , , )

                                  ( ; ) ( ; )

j j j j
rj

j j

r mj

j r j j j r m j j r j r m jm S

r m j r J j

m j m l j lm S l J

P y T y y P y T y y T y T y

T y T y

f y F yθ θ

−∈

+

∈ ∈

≤ < + = Σ ≤ < + > >

> >

≈ Σ Π

"

"  

Where 1,2, , 1, 1, , .mJ m m J= − +" "  
 Thus, the total probability in part (II) is 

            2 1
[ ( ; ) ( ; )]

r mj

k

m j m l j lj m S l J
I f y F yθ θ

= ∈ ∈
= Π Σ Π                  (2) 

 (III) Consider the interval 1[ d , )( 1, , 1)j j jy y y j k++ = −" , and the number of 
systems which failed in this interval is 1 1j j jr r m+ − − � . Suppose that the thi  system 
failed in this part, and then we get the following equations: 

1 1 1

1 2 1 2 1

1

( d ) ( ) ( d ) ( d ) ( )

                                   (min( , , , ) d ) (min( , , , ) )

                                   (

j j i j i j i j j i j j i j

i i iJ j j i i iJ j

J

ll

P y y T y P T y P T y y P T y y P T y

P T T T y y P T T T y

F

+ + +

+

=

+ ≤ < = < − < + = ≥ + − ≥

= ≥ + − ≥

= Π

" "

1 11 1 1
d ; ) ( ; ) ( ; ) ( ; )

J J J

j j l l j l l j l l j ll l l
y y F y F y F yθ θ θ θ+ += = =
+ −Π ≈ Π −Π

 

So, the total probability in the interval 1[ d , )( 1, , 1)j j jy y y j k++ = −"  is 
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      11 1
[ ( ; ) ( ; )] j

J J m
l j l l j ll l

F y F yθ θ+= =
Π −Π  

 Thus, the total probability in part (III) is 

                
1

3 11 1 1
[ ( ; ) ( ; )] j

k J J m
l j l l j lj l l

I F y F yθ θ
−

+= = =
= Π Π −Π               (3) 

 (IV) There are krn −  systems failing in this part. We also suppose that the thi  
system failed in this part, and then get the following probability: 

1 2 1
( d ) (min( , , , ) d ) ( ; )

J

i k k i i iJ k k l k ll
P T y y P T T T y y F y θ

=
> + = > + ≈ Π"  

 So the total probability in part (IV) is 

                4 1
[ ( ; )] k

J
n r

l k ll
I F y θ −

=
= Π                       (4) 

 According to (1)-(4), we can easily get the likelihood function. It takes the 
following form: 

     
1 1

11 1

1

11 1 1 1

[1 ( ; )] [ ( ; ) ( ; )]

      [ ( ; ) ( ; )] [ ( ; )]

r mj

j k

J k
r

j j m j m l j lj j m S l J

k J J Jm n r
l j l l j l l k lj l l l

L C F y f y F y

F y F y F y

θ θ θ

θ θ θ

−

= = ∈ ∈

−
−

+= = = =

= − Π Π Σ Π

Π Π −Π Π

i
       (5) 

Where C  is a constant. 
 Then the maximum likelihood estimation (MLE) of ( 1, 2, , )i i Jθ = "  can be 

obtained by solving the likelihood equation log 0
i

L
θ

∂
=

∂
. 

 
3. The exponential case. 

When the lifetime of each component is exponential distribution with 
parameter ( 1, 2, , )j j Jλ = " , the likelihood function from (5) takes the following form: 

1 11

11 1

1
1

1 1 1 1 1 1

1
1

1 1

[1 e ] [ e e ] [ e e ] [ e ]

  [1 e ] [e ] [e e ] [e ]

j m j l j l j l j j l k k

r mj

j j j j k k

rj

J k k J J Jy y y y y m y n rr
mj j m S l J j l l l

k kay ay ay m ay n ray r
mj m S j

L C

C

λ λ λ λ λ λλ

λ

+

+

−
− − − − − − −−

= = ∈ ∈ = = = =

−
− − − − −− −

= ∈ =

= − Π Π Σ Π Π Π −Π Π

= − Π Σ Π −
 

Where 
1

J

ii
a λ

=
= Σ . 

 Then the log-likelihood function is: 

 
1

1

1 1

1

1 1

log log ( 1) log(1 e ) ( )

           log( ) log(e e )j j

rj

k
ay

i k ki

k k ay ay
m jj m S j

L C r a y a n r y

mλ +

−

=

−
− −

= ∈ =

= + − − − Σ − − +

Σ Σ + Σ −
       (6) 

 Further, the likelihood equations are: 

   
11

1 1

1
11 1

1 1 1

e e( 1) elog ( ) 0
1 e e e

j j

j j

rj

ay ayay k k k
ij j j

i k k jay ay ayi j j
i mm S

y yr yL y n r y m
ε

λ λ

+

+

− −− −
+

− − −= = =
∈

−−∂
= − Σ − − + Σ + Σ =

∂ Σ− −
(7) 
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Where 
1

0
jr

ij

i S

else
ε

∈= 


. 

 Consider the simplest case of 2=J . Let 1n  and 2n  be the number of the 
observed system failures when the cause of failure is known to be component 1 and 2 
respectively, i.e. 1n  and 2n  are the number of observations when }1{=

irS  and 
}2{=

irS . Let 12n  denote the number of masked observations when the failure is 
obtained. 

Let 0 00, 0y r= = , then 0 1 0 11 1m r r r= − − = − . From equations (6), the following 
equations were obtained: 

1

1

1

1

1
11 12

1 0
1 1 1 2

1
12 12

1 0
2 2 1 2

e elog ( ) 0
e e

e elog ( ) 0
e e

j j

j j

j j

j j

ay ay
k k

j j
i k k j ay ayi j

ay ay
k k

j j
i k k j ay ayi j

y yn nL y n r y m

y yn nL y n r y m

λ λ λ λ

λ λ λ λ

+

+

+

+

− −
−

+
− −= =

− −
−

+
− −= =

 −∂
= − Σ − − + + + Σ =

∂ + −


−∂
= − Σ − − + + + Σ = ∂ + −

 

 Two methods were used to deduce the approximate maximum likelihood 
estimation of ( 1,2)j jλ = . 

Method 1: Note that knnn =++ 1221 and 1 2

1 2

n n
b

λ λ
= � , we can obtain that b  

satisfies the following equation: 

       
1 2 1 1 2

1 2 1 2 1

( ) / ( ) /
1

1
( ) / ( ) /1 0

1 2

e e
( ) 0

e e

j j

j j

n n y b n n y b
k k

j j
i k k j n n y b n n y bi j

y ykby n r y m
n n

+

+

− + − +
−

+
− + − += =

−
− Σ − − + + Σ =

+ −
     (8) 

The solution of the equation above can be got by numerical methods, then the 

MLE of ( 1,2)j jλ = can be easily obtained by ( 1,2)j
j

n
j

b
λ = = . 

Method 2: We can use Taylor expansion to get the approximate MLE. From 
[11], we have 

1

1

1
1

e e 1 [ (1 ) ]
e e

j j

j j

ay ay
j j

j j j j jay ay

y y
a y a y

a
γ δ δ

+

+

− −
+

+− −

−
≈ − + + −

−
 

Where
1

j
j

r
p

n
=

+
, 1j jq p= − , 1 1

1
1

ln ln
ln (1 ) lnj j j j

j j j j j
j j

q q q q
q q

q q
γ δ δ+ +

+
+

−
= + − −

−
, 

1
2

1 11

ln( )
( )

j j j j
j

j j jj j

q q q q
q q qq q

δ +

+ ++

= −
− −

. 

Note that 1 2a λ λ= + , the maximum likelihood equations can be written as: 
1

1
12

01 1 1 2

1
2

12
02 2 1 2

log 1( ) 0

log 1( ) 0

k

j j
j

k

j j
j

nL Y n m

nL Y n m

γ
λ λ λ λ

γ
λ λ λ λ

−

=

−

=

∂
= − + + − = ∂ +


∂ = − + + − =

 ∂ +

∑

∑
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Where 
1

10 1
[ (1 ) ] ( )

k k

j j j j j j k kj j
Y m y y y n r yδ δ

−

+= =
= Σ + − + Σ + − . 

Solve the equations above and the approximate MLE of ( 1,2)j jλ = can be 
obtained: 

1 1

12 1 2
0 01 2

ˆ [ ( ) ] / ( ) /[ ( )]( 1, 2)
k k

j
j j j j j j j

j j

n
n n m Y n k m Y n n j

n n
λ γ γ

− −

= =

= + − = − + =
+∑ ∑  

 
4. Simulation study. 

In this section, two numerical examples will be presented to show how one can 
apply the previous theoretical results obtained. It is assumed that n  systems are put 
on the life test, and every system is a series system of two independent components. 
The lifetimes of the components are exponential distributions with parameters 

1 1λ = and 2 0.9λ = respectively. In these examples, there are only k  systems’ 
lifetimes and the corresponding sets of components which may cause the system 
failure are observed. 

Example 4.1. In this example, we generated a random sample with size 30n =  
from the model above. The masking level is 30%l = . The simulated data was 
presented in table 1. Then the data was used to calculate: (i) the approximate MLE of 

1λ  and 2λ ; (ii) the percentage errors associated with the estimations obtained. The 
percentage error associated with the estimation of ( 1,2)j jλ = , say ˆ

j
PE

λ
, is given by 

the following formula: 

ˆ

| exact value of estimated value of |
100%

exact value of j

j j

j

PE
λ

λ λ
λ

−
= ×  

Note in table 1 that i  denotes to the system number, it  denotes the failure time 
of the system i , and iS  denotes the set of components which may cause the system 
i  failure. ' 'it = −  and ' 'iS = −  means the failure time and the corresponding 
possible failure reasons of the system i  are not observed. 

Table 1. The simulated data for example 1 
i  it  iS  i  it  iS  i  it  iS  
1 0.0390 {1,2} 11 0.2426 {2} 21 0.6700 {2} 
2 0.0572 {1} 12 — — 22 — — 
3 — — 13 0.3029 {1} 23 0.8035 {2} 
4 0.1305 {2} 14 0.3084 {1} 24 — — 
5 0.1367 {1} 15 0.3098 {1,2} 25 1.0809 {1,2} 
6 0.1477 {1} 16 0.3217 {2} 26 1.1033 {1} 
7 — — 17 0.4301 {1,2} 27 1.1619 {1} 
8 0.1792 {1} 18 — — 28 1.2308 {1,2} 
9 0.2182 {1,2} 19 — — 29 — — 
10 — — 20 0.5083 {2} 30 — — 

Based on the simulated data, we got that 20k = , 1 8n = , 2 6n = and 12 6n = . Then the 
MLE of the parameters and the percentage errors associated with the estimations 



Estimations of components’ life-parameters under multiple type-II  
censoring using masked data 

 

123 

were computed. After taking the data to the theoretical results in section 3, we got the 
point estimations Îjλ  by using method 1 and ˆ

Ejλ by using method 2. The results 
were 1

ˆ 1.0523Iλ = , 2
ˆ 0.7892Iλ = , 1

ˆ 0.8257Eλ = , 2
ˆ 0.6193Eλ = , and the corresponding 

percentage errors were
1

ˆ 0.0523
I

PE
λ

= ,
2

ˆ 0.1231
I

PE
λ

= ,
1

ˆ 0.1743
T

PE
λ

= ,
2

ˆ 0.3119
T

PE
λ

= . 

Example 4.2. In a practical experiment, the value of k may either be a fixed 
number or a random number. In order to illustrate the influence of k on the accuracy 
of the estimations, k is assumed to be a fixed number. 

In this example, there were three test schemes:(I) 50, 30n k= = ;(II) 50, 35n k= = ; 
(III) 50, 40n k= = . For every scheme, the censored sample was simulated using 
masked data under 20%l = , 40%l =  and 60%l =  respectively. For each particular 
choice of n , k  and l , 1000 replicas of a random sample were generated. The MLE 

( )ˆ ( 1,2; 1, ,1000)i
j j iλ = = "  was found for replica i . And then the mean squared errors 

(MSE) of these estimations were computed from the sample of 1000 replicas. The 
MSE associated with the estimation ˆ

jλ , say ˆ
j

MSE
λ

, is given by 
1000 ( ) 2

ˆ 1
ˆ( ) /1000

j

i
j ji

MSE
λ

λ λ
=

= −∑ . The results were presented in table 2. 

Table 2. The mean squared error of the estimations 
20%l =  40%l =  60%l =  MSE 

(I) (II) (III) (I) (II) (III) (I) (II) (III) 

1
ˆ
I

MSE
λ

 0.0619 0.0579 0.0533 0.0784 0.0671 0.0617 0.0861 0.0826 0.0828 

2
ˆ
I

MSE
λ

 0.0569 0.0504 0.0468 0.0771 0.0661 0.0570 0.1076 0.0807 0.0756 

1
ˆ
E

MSE
λ

 0.1320 0.0944 0.0595 0.1434 0.0997 0.0684 0.1605 0.1181 0.0899 

2
ˆ
E

MSE
λ

 0.1159 0.0738 0.0543 0.1185 0.0831 0.0597 0.1188 0.0970 0.0874 

According to the results shown in table 2, one can conclude that: 
(I) For the same scheme, in other words, for a given sample size n  and a given 

k , the MSE associated with the estimations increase with increasing the masking 
level l .  

(II) For a given sample size n  and the masking level l , the MSE associated 
with the estimations decrease with increasing k . 

(III) The MSE associated with ˆ ( 1, 2)Ij jλ = is always smaller than that associated 
with ˆ

Ejλ . Thus, Îjλ  has a higher accuracy than ˆ
Ejλ . 
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