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ABSTRACT 

In this paper, a minimum time optimal control problem has been developed in 2-
Banach spaces. Existence of the optimal control has been proved in 2-Banach space. 
An example is exhibited to show the technique of application of the control theory in 
generalized 2-normed spaces 
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1. Introduction   

A minimum cost control problem was formulated and solved by Minamide and 
Nakamura [9] in 1971 in Banach Space setting. Choudhury and Mukherjee [1,2,3] in 
1981-83 developed a uniform theory of time optimal control problem for system 
which can be represented in terms of  linear, bounded and onto transformation from 
a Banach space of control function to another Banach space. Important results of 
Functional Analysis are developed by Mehmet Acikgoz [8]; Z.Lewandowska, 
M.S.Moslehian, A.Saadatpour [6,7]; Freese, R., Cho, Y. [4], in 2-Banach space. 
They have developed a uniform theory in 2-Banach space. Optimization in 2-Banach 
space setting is an important area of application of functional analysis. So, it may be 
worthwhile to make an attempt to develop an optimization theory in 2-Banach space. 
In this paper, we want to formulate a certain class of minimum time optimal control 
problems in 2-Banach Space.                                                                                                                                        

2. Some Preliminaries: Definition of 2-Normed space 2.1[12]                                          

Let Xt be a vector space of dimension greater than one over F, where F is the real or 
complex number field. Suppose N1(.,.) be a non negative real valued function on 
Xt×Xt which satisfies the conditions: (і) N1(xi,xj)=0 if and only if xi and xj are 
linearly dependent vectors, (ii) N1(xi,xj)= N1(xj, xi) for  all xi,xj ∈ Xt, (iii) 
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N1(λxi,xj)=|λ| N1(xi,xj) for all λ∈F and for all xi,xj∈Xt, (iv) N1(xi+xj,z)≤ N1(xi,z)+ N1 
(xj,z) for all xi,xj,z ∈ Xt. Then N1(.,.) is called a 2-norm function defined on Xt  and 
(Xt, N1 (.,.)) is called a linear 2-normed space. Also if Xt and Y are 2-Banach spaces 
over the field of real numbers, then Xt×Y is also 2-Banach space with respect to the 
2-norm N3(.,.) where N3{(xi,yi),(xj,yj)}=min{N1(xi,xj),N2(yi,yj)}, i.e. 
N3(.,.)=min{N1(.,.),N2(.,.)}; N1(.,.) and N2(.,.) are 2-norm functions defined on the 
spaces  Xt and Y respectively and N3{(xi,yi),( xj,yj)}=0 iff either xi,xj are linearly 
dependent (L.D) in Xt or yi,yj  are linearly dependent in Y, where N1′ be the 2-norms 
of the conjugate space of Xt . Let N1′,N2′,N3′ are the 2-norm functions defined on the 
spaces X′t,Y′, (Xt×Y)′ respectively, where X′t denotes the conjugate space of Xt .                                                     

We now cite the following some known 2-normed spaces.                                                          

Example 1: Consider the spaces Z where Z=l∞, c and c0 of real sequences. Let us 

define: N1(x,y)= iyjxjyix
N j

sup
Ni

sup −
∈∈

, where x=(x1,x2,……) and y=(y1,y2,….)∈Z. 

Then N1 (.,.) is a 2-norm function defined on Z.                                                                                                           

Example 2: For X=R3, define:                                                                                                    
N1(x,y)=max{x1y2-x2y1+x1y3-x3y1,x1y2-x2y1+x2y3-x3y2}, where 
x=(x1,x2,x3) and y=(y1,y2,y3)∈R3. Then N1(.,.) is a 2-norm on R3. See more details 
Cho,Y [4], M. Acikgoz [8].                                                                                               

Reachable Region(Set) 2.2[10]: The set of all point ξ ∈D such that Ttu =ξ, u ∈Ut 
will be called the Reachable Region (set) with respect to the linear transformation Tt 
and will be denoted by C(t).                                                                                                           

Unit Ball 2.3: Let UXt={xt:N1(α,x)≤1,x∈Xt},α∈Xt, α≠θ;UY={y:N2(β,y)≤1,y∈Y}, β 
∈Y, β≠θ be the unit balls in Xt,Y respectively.                                                                                                            

Definition of generalized 2-Normed space 2.4[12]: Let X and Y be real linear 
spaces. Denote by D a non-empty subset of X × Y such that for every x ∈ X, y ∈ Y 
the sets Dx = {y ∈ Y:(x,y) ∈ D} and Dy =  {x ∈ X:(x,y) ∈ D} are linear subspaces of 
the spaces Y and X, respectively.  A function N3(.,.):D→(0, ∞) will be called a 
generalized 2-norm on D if it satisfies the condition: (i) N3(x, αy) = α  N3(x, y) = 
N3(αx, y) for any real number α and all (x ,y) ∈ D, (ii)N3(x, y + z)≤ N3(x, y) + N3(x, 
z) for x ∈ X, y, z ∈ Y with (x, y),  (x, z) ∈ D, (iii) N3(x + y, z) ≤ N3(x, z) + N3(y, z) 
for x,y ∈ X, z ∈ Y with (x, z), (y, z) ∈ D. Then D is called a 2-normed set. In 
particular, if D = X × Y, the function N3(.,.) is said to be a generalized 2-norm 
function defined on X × Y and the pair (X × Y, N3(.,.)) is called a generalized 2-
normed space. Unfortunately, there is no connection between normed spaces and 2-
normed spaces, but in 1999 in order to introduce some connections between normed 
spaces and 2-normed spaces, Zofia Lewandowska [6] introduced generalized 2-
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normed spaces, as a subspace of 2-normed spaces.  If X = Y, then the generalized 2-
normed space (X × X, N1(.,.)) is denoted by (X, N1(.,.)). In the case that X = Y, D = 
D−1, where D−1 = {(y, x) : (x, y) ∈ D}, and N3(x, y) = N3(y, x) for all (x,y)∈D, we 
call N3(.,.) a generalized symmetric 2-norm function and D a symmetric 2-norm set.                                               
Also, let  (X,N(.)) be a normed space. Then N1(x, y) = N(x). N(y), for all x, y ∈ X, is 
a 2-norm function defined on X × X. So, (X, N1(.,.)) is a generalized 2-normed 
space. If we take as N(x)=N(y), our generalized 2-normed space will be a 
generalized symmetric 2-normed space with the symmetric 2-norm defined by N1(x, 
y) = N(x). N(y) for all x, y ∈ X. Let us remark that  a symmetric 2-normed space 
need not be a 2-normed space in the sense of Gahler [5]. For instance given above, 
x≠θ, y=kx, k≠0, we obtain N1(x, y)=N1(x, kx)=kN1(x,x)>0, but inspite of this x 
and y are linearly dependent. So from this, we say that the 2-normed space is not a 
2-normed space in the sense of definition 2.1. Each 2-normed space is a generalized 
2-normed space. But, in case of X = Y, D = D−1; the generalized 2-normed space is a 
2-normed space.                                                                                                                    

Example 3[14]:Suppose that s be the linear space of all sequences of real numbers. 

Put N1(x,y) = ∑
∞

=1n
nx ny ,where x={xn},y={yn}∈s.Then by def.2.4,D={(x,y)∈ s×s: 

N1(x,y)<∞} is a symmetric 2-normed set and the function N1(.,.):D→(0,∞) is a gene-  
alized symmetric 2-norned on D.                                                                           

Example 4[13]:Let X be real inner product space. Then X is a symmetric generali-

zed 2-normed space under the 2-norm function N1(x,y)= ∑
=

n

1i
ii y,x = ∑

=

n

1i
ii yx , ∀ 

xi,yi ∈ X, by def.2.4.                                                                                                    

Example 5[12]: Let x, y∈C[a,b] and X denotes the set of all real-valued continuous 
functions x(t) defined on the closed interval [a,b]. If x ≡x(t) and y≡y(t) are in X, 
N(x) = x(t)

bta
sup

≤≤
, N(y) = y(t)

bta
sup

≤≤
, where X is a normed space, then by def.2.4, 

N1(x,y)= y(t)
bta

supx(t)
bta

sup
≤≤

⋅
≤≤

is a generalized 2-normed space.                                                                                

For another examples of generalized 2-normed spaces, see U.Adak ([10]--[15]).                                                        

Example 6: Let X=R3 and consider the following 2-norm function defined on X: 

        















=

rqp
nml
kji

dety)(x,1N , where N(x,y)=x×y, x=(l,m,n) & y=(p,q,r). Then 

(X,N1(.,.)) is a 2-normed Space.                                                                             
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Example 7: Let X=Q3, the field be the rational number and consider the following 
2-norm on X :   

        















=

rqp
nml
kji

dety)(x,1N , where N(x,y)=x×y, x=(l,m,n) & y=(p,q,r). Then 

(X,N1(.,.)) is a 2-normed Space.                                  

Example 8: Let Pn denotes the set of all real polynomials of degree≤n, on the 
interval [0,1]. By considering usual addition and scalar multiplication, Pn is a linear 
vector space over the reals. Let {x0,x1,x2,…x2n} be distinct fixed point in [0,1] and 

define the following 2-norm function defined on Pn: N1(f,g)= ∑
=

2n

1i
)g(y),f(x ii , 

whenever f and g are linearly independent; and N1(f,g)=0 if f and g are linearly 
dependent. Then (Pn,N1(.,.)) is a 2-normed space.                                                           

The time optimal control problem can be defined as follows:                                                                             

Problem: Let Bt be a 2-Banach space depending upon the continuous parameter t. 
Let D be another 2-Banach space. Let Tt be a linear, bounded transformation 
depending upon the parameter t, mapping Bt onto D. Let Ut ⊂ Bt be the unit ball in 
Bt and ξ ∈ D. The problem is to determine u ∈ Ut such that Ttu = ξ and t is 
minimum. Here Bt is an increasing function of t in the sense that Bt1⊂Bt2, whenever 
t1 ≤ t2. Also Tt1 can be regarded as the restriction of Tt2 defined on Bt2 on Bt1. It can 
be verified that Ut1 ⊂ Ut2.                                                                                          

Theorem 2.1: The reachable region C(t) is bounded and a convex body, 
symmetrical with respect to the origin of D.                                                                                                                 

Proof: Since Ut is convex and bounded and T is linear and bounded, and since linear 
operators preserve convexity, the image C(t) = TtUt is convex and bounded. Also, if 
λ is any real number with λ ≤ 1 then for ξ ∈ C(t) we also have λξ ∈ C(t) because ξ 
= Ttu for some u ∈ Ut implies λξ =λTtu = Tt(λu) and λu ∈ Ut due to N1{(λu, λu1): 
λu, λu1∈ Ut} = λN1{(u, u1): u, u1∈ Ut} ≤ 1. Thus,C(t) is circled and symmetrical. 
Again, since Tt is onto, it follows from open mapping theorem that TtUt = C(t) will 
contain multiple of the unit ball in D. Thus, C(t) is a convex set with nonempty 
interior and thus is a convex body.                                                                                

Corollary 2.1: The reachable region C(t) is closed when Bt is either a reflexive 
space or it can be considered as a conjugate of some other 2-Banach space.       

Proof: It is known that a space is reflexive if and only if its unit ball is weakly 
compact. So, if it is assumed that Bt is reflexive, then the unit ball Ut  is weakly 
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compact. Again, since Tt is linear and bounded, it is continuous.  Also, the 
continuous image of weakly compact set is weakly compact. Consequently C(t) is 
weakly compact and hence it is weakly closed and  therefore it is strongly closed. 
Then C(t) is closed. However, if Bt is  not a reflexive space but it can be considered 
as a conjugate of some other 2-Banach space, then it follows that its unit ball Ut is 
weakly compact in some topology. Therefore by the previous analogy we can 
conclude that C(t) is closed in this case also. To solve the minimum time control 
problem, we shall first consider the following auxiliary problem.                                                                               

Auxiliary problem: Let ξ ∈δC(t) where δC(t) denotes the boundary of C(t) for 
some given time t. Then determine u ∈ Ut such that Ttu = ξ and N1{(u, u1): u, u1∈ 
Ut} is minimum. We shall call this the minimum 2-norm problem. The 
corresponding control will be called the optimal control. In the following theorems 
we shall find the form of the optimal control and also the shape of the reachable set 
w.r.t. the minimum time t.                                                                                                                            

Theorem 2.2: An admissible control which will be optimal must satisfy 
N1{(u,u1):u,u1∈Ut =1.                                                                                                                    

Proof: We have already shown that C(t) is a closed convex body. Thus if ξ ∈ δC(t), 
then there exists a Φ ∈ D*, where D* is the conjugate space to D, such that 〈ξ, Φ〉 ≥ 
〈η, Φ〉 for all η∈C(t). Let u ∈ Ut be such that Ttu = ξ. Since C(t) is circled, it 
follows, that 〈ξ, Φ〉 ≥ |〈Ttu, Φ〉| = |〈u, Tt

*Φ〉| for all u ∈ Ut, Tt
* being the 

transformation adjoint to Tt.  ∴  〈ξ, Φ〉 ≥ Φ,u Tsup *
t

1}tU1uu,:)1u{(u,1N ≤∈
=                       

N1′{(Tt
*φ, f):Tt

*φ, f∈Bt
*}. Now let u∈Ut such that Ttu = ξ. Then [N1{(u, u1): u, u1∈ 

Ut} N1′{(Tt
*Φ, f):Tt

*Φ, f∈Bt
*}] ≥ 〈u, Tt

*Φ〉 = 〈Ttu, Φ〉 = 〈ξ, Φ〉 ≥N1′{(Tt
*Φ, f):Tt

*Φ, 
f∈Bt

*}.  ∴ N1{(u, u1): u, u1∈ Ut} ≥ 1. Thus  N1{(u, u1): u, u1∈ Ut} = 1.                                              
This proves the theorem.                                                     

Theorem 2.3: Let ξ ∈ δC(t) and Φ∈ D* denotes a supporting hyperplane to C(t) at 
ξ. Then 〈ξ, Φ〉 = N1′{(Tt

*Φ, f):Tt
*Φ, f∈Bt

*}, where D* is the conjugate space to D 
and T* is the transformation adjoint to T.                                                                                 

Proof: Since ξ ∈ δC(t), there is a uΦ ∈Ut such that ξ = TtuΦ. Hence by theorem 2.2,                               
〈ξ, Φ〉 ≥ N1′{(Tt

*Φ, f):Tt
*Φ, f∈Bt

*}      …………………(1).                                                                             
Also 〈ξ, Φ〉 = 〈Ttuφ,Φ〉 = 〈uΦ,Tt

*Φ〉 ≤ 
[N1{(uΦ,vΦ):uΦ,vΦ∈Ut}N1′{(Tt

*Φ,f):Tt
*Φ,f∈Bt

*}] ≤ N1′{(Tt
*Φ, f):Tt

*Φ, f∈Bt
*}..(2).                                                  

From (1) and (2)  〈ξ, Φ〉 = N1′{(Tt
*Φ, f):Tt

*Φ, f∈Bt
*}.                                                                                  

Again, as 0 ∈ int C(t) (C(t)is a convex body), it follows that 〈ξ, Φ〉 > 0.                                     

Theorem 2.4: Let ξ ∈ δC(t) where t is the  given terminal time, and Φ ∈ D* denotes 
a supporting hyperplane at ξ. Let uΦ be the optimal control to reach at ξ in the above 
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sense. Then uΦ maximizes 〈u, Tt

*Φ〉 where Tt
* and D* denote the adjoint 

transformati-on and adjoint space to Tt and D respectively and  〈uφ,Tt
*Φ〉 = 

ΦT,u max *
t1}tU1u,u :)1u,{(u 1N =∈

=N1′{(Tt
*Φ,f):Tt

*Φ,f∈Bt
*}and                                      

     N1{( uΦ,vΦ): uΦ,vΦ∈ Ut}=1.                                                                                                         

Proof: Since C(t) is closed convex body (by theorem 2.1) and  ξ∈δC(t),there exists 
a Φ ∈D*, such that 〈η, Φ〉 ≤ 〈ξ,Φ〉 for all η ∈ C(t). Let u∈Ut⊂Bt be such that η = 
Ttu. Since C(t) is circled (by theorem 2.1), it follows that 〈ξ,Φ〉  ≥  |〈Ttu, Φ〉| = 
|〈u,Tt

*Φ〉|, for all u ∈ Ut ⊂ Bt.                                                                                                                          

Hence 〈ξ, Φ〉 ≥  Φ*
tTu,

tBu1,}tU1uu,:)1u{(u,1N
sup

∈≤∈
=N1′{(Tt

*Φ,f):Tt
*Φ, f∈Bt

*} --(1).                                                  

Now, since ξ∈δC(t), there is a uΦ∈Ut, such that ξ=TtuΦ. Thus                                                   
〈ξ,Φ〉 = 〈Ttuφ,Φ〉 = 〈uΦ,Tt

*Φ〉 ≤ N1{( uΦ,vΦ): uΦ,vΦ∈Ut} N1′{(Tt
*Φ,f):Tt

*Φ,f∈Bt
*}≤ 

N1′{(Tt
*Φ,f):Tt

*Φ,f∈Bt
*}------(2), since  N1{( uΦ,vΦ): uΦ,vΦ∈Ut} =1, (by theorem 

2.2).  From (1) and (2) 〈uΦ, Tt
*Φ〉 =N1′{(Tt

*Φ, f):Tt
*Φ, f∈Bt

*}   --------------(3).             
Again, 〈η, Φ〉 ≤ 〈ξ, Φ〉 for all η ∈ C(t),therefore 〈u,Tt

*Φ〉 ≤ 〈uφ,Tt
*Φ〉 for all 

u∈Ut⊂Bt. ∴ ΦTu,sup *
t

tBu1,}tU1uu,:)1u{(u,1N ∈≤∈
≤ 

〈uφ,Tt
*Φ〉=N1′{(Tt

*Φ,f):Tt
*Φ,f∈Bt

*},by (3),-------------(4). Again since Ut⊂Bt is 
weakly compact set, and 〈u,Tt

*Φ〉 is strongly continuous function of u, therefore  
ΦTu,sup *

t
tBu1,}tU1uu,:)1u{(u,1N ∈≤∈

 = ΦTu,sup *
t

tBu1,}tU1uu,:)1u{(u,1N ∈=∈
 will be 

attained at some point uΦ∈Ut⊂Bt , N1{( uΦ,vΦ): uΦ,vΦ∈Ut} =1, which proves the 
theorem.                                                                                                                                                                          

Theorem 2.5: Let K be a weakly compact, convex set in a 2-Banach space D and let 
Φ be any element ∈ D*, the conjugate space to D. Then there exists a point η0 ∈ K, 
such that Φ denotes a supporting hyperplane to K at η0 ∈δK.                                                                                      

Proof: If Φ is a supporting hyperplane to K at η0,  then the theorem is proved. So let 
us suppose that Φ is not a supporting hyperplane at any ξ ∈ K. Now, because Φ ∈ 
D* and K is bounded, therefore 〈η, φ〉≤ C for all η∈K where C>0 is some constant. 
Thus 〉〈

∈
Φ, ηsup

Kη
 will exist. Put MΦ, ηsup

Kη
=〉〈

∈
. Then there will exists a sequence                                                

{ηn; ηn ∈K} such that 〈ηn, Φ〉 > M − (1/n) for  n ≥ N. Again, since K is weakly 

compact, there will exists a subsequence








knη such that 








knη converges weakly 
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to some η0 ∈ K. Therefore Φ,
k

nη
> M − 1/nk. Therefore lim Φ,

k
nη

= 〈η0, Φ〉 

≥  M. On the other hand,  Φ,
k

nη
 ≤  M (because M is the least upper bound).             

∴ lim Φ,
kn

η = 〈η0, Φ〉 ≤ M. Hence 〈η0, Φ〉 = M. Thus 〈η, Φ〉 ≤ 〈η0, Φ〉 for all η 

∈ K.   Also the above relation shows that the functional Φ assumes its maximum 
value on K at the vector η0, which together with the fact that any linear functional 
maps open sets into open sets, shows that η0 cannot belong to interior of K. 
Consequently η0 ∈ δK.                                                                                                                                    

 Theorem 2.6: Let ξ∈C(t1)∩δC(t1) where C(t1) is the reachable region.                                               

Then     
}*

tBfψ,*
t2T:f)ψ,*

t2{(T'
1N

ψξ,

ψ
max

∈
 is ≤ 1 or ≥ 1 according as t2 ≥ t1 or t2 ≤ t1.                                                

(Here Bt is to be considered as in Corollary of Theorem 2.1).                                                
To prove this we require the following corollary.                                                              

Corollary 2.2: Let ξ ∈ δC(t1), t2 ≥ t1. Then the ray kξ, k > 0 intersects δC(t2) at some 
point η= ξl , l  ≥ 1.     

Proof: Since C(t2) is bounded (by Theorem 2.1), there will exist a k > 0, say k = k0, 
such that k0ξ ∉ C(t2). Considered the position of the ray R = [kξ, 0 ≤ k ≤ k0]. We 
now consider a set S defined by S = {k: kξ ∈ C(t2)}. Let  ksup

Sk∈
=l which will evid-

ently exist (because k ≤ k0). Evidently  l  ≥ 1. Now there exists a sequence {kn} such 
that lim kn = l  and knξ = xn ∈ R ∩ C(t2). Again, since R is compact, there is a sub-
sequence {

knx } such that lim 
knx = x0 ∈ R. Also, as 

knx  ∈ C(t2) and C(t2) is 

closed, therefore x0 = ξl ∈ C(t2). Now, x0 ∉ Int C(t2), because, if x0 ∈ Int C(t2) then 
there will be an open sphere Sε of radius ε which will be contained entirely within 
C(t2).  Consider the point                                                                                                 

( ){ }Dw, ξ:w, ξ2N
ξ

2
ε

0xx
∈

+= . Then x ∈ Sε  and x ∈ R. But then 

( ){ } ξ
Dw, ξ:w, ξ22N

ε1x












∈
+= , which contradicts the fact that  ksup

Sk∈
=l . 

This completes the proof of the corollary.                                                                                                                    
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Proof of Theorem 2.6:  We shall prove the theorem for t2 ≥ t1. Then we are  

required to show that 
}*

tBfψ,*
t2T:f)ψ,*

t2{(T'
1N

ψξ,

ψ
max

∈
                                                                                               

for a given ξ ∈ C(t1) ∩  δC(t1). Now, because t2 ≥ t1,we have Bt1 ⊂ Bt2 and Ut1 ⊂ Ut2 
(by  assumption). The transformation Tt2 is such that Tt1 is the restriction of Tt2 on  
Ut1.  Hence C(t1) = Tt1Ut1 = Tt2Ut1 ⊂ Tt2Ut2 =C(t2) therefore ξ ∈ C(t2). Let ψ ∈ D*, 
D* is the conjugate space to the 2-Banach space D. Consequently by theorem 2.5, 
there exists a point ξ′ ∈ δC(t2), such that ψ defines a supporting hyperplane to C(tt2) 
at ξ′. Again, since ξ′ ∈ δC(t2) and ψ defines a supporting hyperplane to C(tt2) at ξ′, 
hence we can write 〈ξ′,ψ〉 = }Bfψ,T:f)ψ,{(TN *

t
*
t2

*
t2

'
1 ∈ (by Theo. 2.3).                   

         But 〈ξ, ψ〉 ≤ 〈ξ′, ψ〉 as ψ defines a supporting hyperplane at ξ′ ∈ δC(t2).                                                           
Therefore 〈ξ, ψ〉 ≤ 〈ξ′, ψ〉 = }Bfψ,T:f)ψ,{(TN *

t
*
t2

*
t2

'
1 ∈  such that                                                                            

1
}*

tBfψ,*
t2T:f)ψ,*

t2{(T'
1N

ψ, ξ
≤

∈
. Hence  1

}*
tBfψ,*

t2T:f)ψ,*
t2{(T'

1N

ψ, ξ

ψ
sup ≤

∈
 . Now  

ξ ∈ δC(t1) and let η = ξl ∈ δC(t2) (t2 ≥ t1) (by the above corollary).                                                         
Let ψ denotes a supporting hyperplane to δC(t2) at η.                                                                                                  

Hence by Theorem 2.3, we get  1
}*

tBfψ,*
t2T:f)ψ,*

t2{(T'
1N

ψ, ξ
=

∈
. Therefore                                                   

11
}*

tBfψ,*
t2T:f)ψ,*

t2{(T'
1N

ψ, ξ
≤=

∈ l
.   Consequently sup is attained at a point        

Φ = ψ ∈ D*, where ψ denotes a supporting hyperplane at η = ξl ∈ C(t2). Thus we 
have proved the theorem for t2 ≥ t1. Similarly, we can show that if t2 ≤ t1 then   

 1
}*

tBfΦ,*
t2T:f)Φ,*

t2{(T'
1N

Φ, ξ

Φ
max ≥

∈
.  This completes the proof of the theorem.                                                      

Theorem 2.7: Let t1 < t2 and Tt1:Bt1 → D, Tt2:Bt2 → D be bounded linear onto trans- 
formations. Then C(t1) ⊆ C(t2) and δC(t1) ∩  δC(t1) = 'Φ  iff                          

}BfΦ,T:f)Φ,{(TN }BfΦ,T:f)Φ,{(TN *
t

*
t1

*
t1

'
1

*
t

*
t2

*
t2

'
1 ∈>∈ , Φ∈D* and 'Φ denotes 

the null set. (Here Bt1 and Bt2 are to be considered as in corollary 2.1).                                                                       

Proof: We have already assumed that if t1 < t2, then Bt1 ⊆ Bt2. Ut1 and Ut2 denote the 
unit balls in Bt1 and Bt2 respectively. Let C(t1) and C(t2) be reachable regions in D 
with respect to the transformations Tt1 and Tt2 corresponding to the time t1 and t2 
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respectively. Let ξ ∈ C(t1). Then there exists u1 ∈ Ut1 such that Tt1(u1) = ξ. As u1 

∈Bt1 ⊂ Bt2, hence Tt2(u1) ∈ C(t2). But Tt1(u1) = Tt2(u1) as Tt1 is the restriction of Tt2 
on Bt1. Hence  ξ ∈ C(t2).   ∴ C(t1) ⊆ C(t2). To prove the next part, let us assume that  

⋅∈>∈ }BfΦ,T:f)Φ,{(TN }BfΦ,T:f)Φ,{(TN *
t

*
t1

*
t1

'
1

*
t

*
t2

*
t2

'
1 We shall show that 

δC(t1) ∩ δC(t2) = Φ. Let Φ ∈ D*  be a functional over D. Then corresponding to Φ 
we can find by Theorem 2.5,  a point ξ ∈ δC(t1)  and a point η ∈ δC(t2), such that Φ 
is a supporting hyperplane at ξ to C(t1) and at η to C(t2) (Because according to the 
conditions of the theorems, C(t1) and C(t2) are weakly compact and convex sets). 
Also 〈η, Φ〉= }BfΦ,T:f)Φ,{(TN *

t
*
t2

*
t2

'
1 ∈ and 〈ξ, Φ〉 = }BfΦ,T:f)Φ,{(TN *

t
*
t1

*
t1

'
1 ∈  

(by Theorem 2.3). Again by the Corollary 2.2, corresponding to η ∈ δC(t2), we can 
find a point ξ′∈δC(t1) such that ξ′= ηl where l ≤1. Now, we have, 

*
t

*
t1

*
t1

'
1

*
t

*
t2

*
t2

'
1 BfΦ,T:f)Φ,{(TN }BfΦ,T:f)Φ,{(TN ∈>∈  (by hypothesis).  Hence 

〈η, Φ〉 > 〈ξ, Φ〉.  Also  〈ξ, Φ〉 ≥ 〈ξ′, Φ〉, since Φ is a supporting hyperplane to ξ and 
ξ′ is any point in δC(t1). Consequently 〈η,Φ〉 > 〈ξ′,Φ〉  i.e. 〈η,Φ〉 > 〈 ηl ,Φ〉                         
= l 〈η, Φ〉  (Because ξ′= ηl , l ≤ 1). Hence δC(t1) ∩ δC(t2) = 'Φ .  

Conversely, let δC(t1) ∩ δC(t2) = 'Φ .                                                                         
We are to show *

t
*
t1

*
t1

'
1

*
t

*
t2

*
t2

'
1 BfΦ,T:f)Φ,{(TN }BfΦ,T:f)Φ,{(TN ∈>∈ for t1 < t2 

and for all Φ ∈ D*. Let Φ ∈ D*, be any functional over D. Hence corresponding to Φ 
we can find by Theorem 2.5, a point ξ ∈ δC(t1) and a point η ∈ δC(t2) such that Φ is 
a supporting hyperplane at ξ ∈ δC(t1) and at η ∈ δC(t2). Then by Theorem 2.3,                 
〈ξ , Φ〉 = }BfΦ,T:f)Φ,{(TN *

t
*
t1

*
t1

'
1 ∈ , 〈η, Φ〉= }BfΦ,T:f)Φ,{(TN *

t
*
t2

*
t2

'
1 ∈ . Now 

because C(t1) ⊆ C(t2) and by hypothesis  δC(t1) ∩ δC(t2) = 'Φ , hence ξ ∈ Int C(t2). 
Thus     〈ξ,Φ〉 < 〈η, Φ〉 where Φ is a supporting hyperplane at η to C(t2). Therefore 

}BfΦ,T:f)Φ,{(TN *
t

*
t1

*
t1

'
1 ∈ < }BfΦ,T:f)Φ,{(TN *

t
*
t2

*
t2

'
1 ∈ .                                            

The following corollary can be proved.                                

Corollary 2.3: If δC(t1) ∩ δC(t2) = 'Φ  then                                                                                                   

⋅
≠∈

∈
<

≠∈

∈

o(.,.)'
2ND*},1ΦΦ,:)1ΦΦ, {'

2N

}*
tBfΦ,*

t2T:f)Φ,*
t2{(T'

1N
sup

o(.,.)'
2ND*},1Φ, Φ:)1Φ, {(Φ'

2N

}*
tBfΦ,*

t1T:f)Φ,*
t1{(T'

1N
sup  
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Proof: We have  }BfΦ,T:f)Φ,{(TN *
t

*
t1

*
t1

'
1 ∈ < }BfΦ,T:f)Φ,{(TN *

t
*
t2

*
t2

'
1 ∈ ≤ 

o(.,.)'
2ND*},1ΦΦ,:)1ΦΦ, {('

2N

D*}1ΦΦ,:)1Φ{(Φ('
2N

sup}BfΦ,T:f)Φ,{(TN *
t

*
t2

*
t2

'
1

≠∈

∈
⋅∈ . This 

completes the proof of  the corollary.                                                                              
 
Theorem 2.10: Let ξ ∈ δC(tf) ∩ C(tf) and t ≥ tf.                                                                                               

Then 
}*

tBfΦ,*
tT:f)Φ,*

t{(T'
1N

Φ, ξ

Φ
max

∈
 is a non-increasing function of t, t ≥ tf.                                               

(Here Bt is to be considered as in Corollary of Theorem 2.1).                                                                                     
                                                                        
Note 1. Any complete 2-normed space is said to be 2-Banach space. Every 2-
normed space of dimension 2 is a 2-Banach space when the underlying field is 
complete. Examples 6 and 8 are 2-Banach spaces, while example 7 does not. For 
details see A.White [17].  A linear 2-normed space of dimension 3 is not a 2-Banach 
space. For details see A.White [17]. Every 2-normed space is a locally convex 
topological vector space. But convers is not true. In fact for a fixed b∈X, 
Pb(x)=N1(x,b) ∀x∈X, is a seminorm and the family P={Pb: b∈X} generates a locally 
convex topology on X. Such a topology is called the natural topology induced by 2-
norm N1(.,.).                                                                                                           

Example 9: We shall consider the system governed by the following first order 

differential equation:   1u2x
dt

1dx
+= , 2u

dt
2dx

=      -------------→(1), where x1(t), 

x2(t) represent the instantaneous state of the system in the phase plane at time t and 
u1 and u2 are the control functions. x1(t) and x2(t) can be considered as deviations of 
the actual trajectory from the nominal trajectory. The problem is, given any initial 
value of the deviation [x1(0),x2(0)] − what will be the control function required to 
reduce the error to the value zero in minimum time. u1(t) and u2(t) may be 
considered to be fuel flow rates which emanate from independent fuel supplies, for 
which saturation will set in at the same value. Without any loss of generality we can 
set this value at 1. Thus the constraint imposed on u1(t) and u2(t) can be expressed as 
J(u) = 1(t)2u(t),1u{max sup(t)2u(t),1u{max sup

ξtξt
≤⋅

∈∈
   ---→(2),                      

where ξ = [0, t0], t0 being the time for which the system is allowed to run.                                                
To solve this problem ut = [u1(t),u2(t)] may be considered to belong to L∞(l∞(2),τ) 
×L∞(l∞(2),τ). We shall denote L∞(l∞(2),τ) ×L∞(l∞(2),τ) by the symbol B∞,∞ × B∞,∞  .  
We observe that N1(u,v) in this space coincide exactly with J(u) i.e., N1(u,v)=J(u)= 
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1(t)2u(t),1u{max sup(t)2u(t),1u{max sup
ξtξt

≤⋅
∈∈

-------→(3).                                        

The solution of the system (1) is given as  ∫ −=−− t
0 Bu(s)dsAsex(0)x(t)Ate ,→(4) 

where 











==
10
01

B,
00
10

A , x = 








2x
1x

, u = 








2u
1u

. If the system reaches the null 

state at time t, equation (4) reduces to  ∫ −=− t
0 Bu(s)dsAsex(0)  or putting −x(0) = 

ξ, ∫ −= t
0 Bu(s)dsAseξ  = Stu, where Tt is linear and onto, as can be easily verified. 

Thus the problem becomes one of a linear transformation of the 2-Banach space    
B∞,∞ × B∞,∞  to R2. Since N1(u,v)≤ 1, the above problem readily becomes one of 
mapping unit sphere U in B∞,∞  × B∞,∞  to R2. The optimal control for the problem is 
given by  

[ ] [ ]t0,t01Φ1,(t)1u
01Φ, 1Φsign

(t)1u ∈




≠≤
≠

= ; [ ] [ ]⋅∈−= t0,t,1Φ2Φsign(t)2u                          

Another example is given in U.Adak & H.K.Samanta [12] to show the technique of 
application of the control theory in generalized 2-normed spaces.                                                                               
 
Conclusion: In this paper, we introduced generalized 2–normed spaces and 2-
normed spaces. There are appropriate connections between: (i) normed spaces and 
generalized 2–normed spaces, (ii) 2-normed spaces and generalized 2–normed 
spaces, (iii) 2-normed spaces and 2-Banach spaces, (iv) 2-normed spaces and locally 
convex topological vector spaces, (v) generalized 2-normed spaces and generalized 
symmetric 2-normed spaces.                                                                                                                                        
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