
Journal of Physical Sciences, Vol. 13, 2009, 209-216
ISSN: 0972-8791: www.vidyasagar.ac.in/journal

209

Generation of Minimal Spanning Tree Based on
Analytical Perspective of Degree Sequence

Sanjay Kumar Pal1, Samar Sen Sarma2 and Puspita Manna3

1Department of Computer Science and Applications
NSHM College of Management and Technology

B. L. Saha Road, Kolkata, INDIA
E-mail: pal.sanjaykumar@gmail.com

2Department of Computer Science & Engineering

University of Calcutta
Kolkata, INDIA

E-mail: sssarma2001@yahoo.com

3Department of OCLAN
Bharat Sanchar Nigam Limited

Champahati Telephone Exchange, West Bengal Circle
E-mail: puspita3@yahoo.com

Received August 17, 2009; accepted October 21, 2009

ABSTRACT

This paper considers generation of Minimal Spanning Trees (MST) of a simple
symmetric and connected graph G. In this paper, we propose a new algorithm to find
out minimum spanning tree of the graph G based on the degree sequence factor of
nodes in graph. The time complexity of the problem is less than

)log(ENO compared to the existing algorithms time complexity,

() CEEO +log of Kruskal algorithm, which is optimum. The goal is to design an
algorithm that is simple, elegant, efficient, easy to understand and applicable in the
field of networking design, mobile computing and engineering.

Keywords: Graph, Tree, Sequence, Degree Factor, MST, Algorithm.

1. Introduction

Graph theory is one of the rapidly developing branches of mathematics and
finds wide applicability in computer science [8]. Most of the mathematical and
scientific problems can be formulated in terms of Graph Theory [3]. It is also
applied in social sciences, linguistic, physical sciences, communication engineering
and plays an important role in switching theory, artificial intelligence, formal
languages, computer graphics, operating systems, compiler writing, information

Sanjay Kumar Pal and Samar Sen Sarma

210

organization, and retrieval [3, 4, 5]. Graphs, especially trees and binary trees are
widely used in the representation of data structure [4, 5, 6].
 A Spanning Tree is a tree of a connected graph G, which connect all vertices
of the graph. Generation of a single spanning tree for a simple, symmetric and
connected graph G is well known polynomial time solvable problem [3, 4].
Enumeration of spanning tree in undirected simple connected graphs is an important
issue in many engineering networking design, mobile communication and scientific
problems [10, 13]. Applying graph theory easily solves most of the problems in the
fields like networking and circuit analysis. In 1981 coauthor Samar Sen Sarma
published in his paper an algorithm, one of the most important graph theory
problems; generation of all spanning trees of a simple connected graph [1]. The
spanning trees generated by this algorithm are all distinct i.e. there is no possibility
of generation of duplicate spanning trees, and also prohibit generation of all the non-
tree sub-graphs.

Many practical applications, particularly design of electrical circuits,
communication networks and transportation networks can be formulated as
optimization of minimal spanning tree problem [1, 2, 3, 10, 14]. The goal of
optimization of minimal spanning tree is to find a solution that is appropriate for a
particular application. When studying diverse problems, one often makes an
assumption of general position: for minimal spanning trees, one can infinitesimally
perturb the edge weights so that all are distinct; in this way picking out a unique
solution. Several algorithms exist for generation of Minimal Spanning Tree. Otakar
Boruvka described an algorithm for finding a Minimal Spanning Tree in a graph for
which all the edge weights are distinct [11]. In 1957, Computer Scientist C. Prim
discovered another algorithm that finds a minimal spanning tree for a connected
weighted graph [3]. This algorithm continuously increases the size of a tree starting
with a single vertex until it spans over all the vertices. This algorithm was actually
discovered in 1930 by mathematician Vojtech Jarnik. Joseph Kruskal described
another minimal spanning tree algorithm where total weight of all the edges of the
tree is minimized [3, 4]. Edsger Dijkstra in 1959 discovered a minimal spanning tree
algorithm that solves the single source-shortest path problem for a directed graph
with non-negative edge weights [3, 4, 5, 6].

Several distinct techniques exist for generation of all spanning trees of a
graph[1, 2, 13]. In 2007, Authors have discussed an algorithm where trees are
generated by examining 1

e
nC − sets of edges where e is the number of edges and n is

the number of vertices of a simple connected graph eliminating some set of edges
which form circuit [2].Here, in this paper we introduce a new algorithm for
generation of minimal weight spanning tree of a graph which requires less execution
time and memory space compared to the existing algorithm. The algorithm is based
on the degree factor of the degree sequence and the weight of edges in the graph G.
A sequence nddddd ,....,,,, 4321 of nonnegative integers is called a degree
sequence of given graph G, if the vertices of G can be labeled n4321 v,, v, v, v,v …
so that degree id=iv ; for all i [7]. The sum of the integers nddddd ,....,,,, 4321 is

Generation of Minimal Spanning Tree Based on Analytical Perspective of
Degree Sequence

211

equal to 2e, where e is the number of edges in a graph G. For a given graph G, a
degree sequence of G can be easily determined [7, 9]. Now the question arises that,
given a sequence nddddd ,....,,,, 4321=ξ of nonnegative integers, under what
conditions does there exist a graph G? A necessary and sufficient condition for a
sequence to be graphical was found by Havel and later rediscovered by Hakimi [7,
9, 12]. Based on the above concept here, we introduce a new technique to find out a
minimum spanning tree of a graph G considering the degree sequence factor of the
nodes. The time complexity of the new algorithm is optimal in comparison to the
algorithms of Kruskal and Prim and also optimized the space complexity as well in
the new algorithm.

2. Terminology

2.1 Realisation:
A sequence nddddd ,....,,,, 4321=ξ of nonnegative integers is said to be graphic
sequence if there exists a graph G whose vertices have degree id and G is called
realization of ξ.

2.2 Spanning Tree: A Spanning Tree S is a tree of a connected graph G,
which touches all vertices of the graph. A spanning tree has n vertices and
exactly (n-1) edges of a graph G.

2.3 Minimal Spanning Tree: Let G be a connected, edge-weighted graph. A
minimal spanning tree is a subgraph of G that satisfies the following properties:

• It is a tree, that is, it is connected and has no cycles.
• It is spanning, that is, it contains all vertices of G.
• It has minimal total edge-weight among all possible trees.

2.4 Adjacency Matrix: For a graph G of n vertices and e edges, if, set of vertices,
V(G) = {v1, v2, v3,……, vn} and set of edges E(G) = {e1, e2, e3,……, en}. The
adjacency matrix A, of weighted graph G, is nn× matrix and it can be represent by
A = [aij], where





=
0

ij
ij

w
a

2.5 Degree of a vertex: The degree di of a vertex vi in a graph G is the
number of edges connected with vi. In other words, degree di is the number of
vertices adjacent to the vertex vi.

2.6 Node Degree Factor: Node degree factor of each node vi is the ratio between
summations of degree of all nodes of graph G and degree of a particular node i.e.

if there is an edge between , ()i jv v E G∈ and ijw is weight of edge
if there is no edge

Sanjay Kumar Pal and Samar Sen Sarma

212

)(deg
1

i

n

i
i

vd

d

nodeaofree
graphofnodesofDegreeofSummationFactorDegreeNode

∑
===

3. Minimal Spanning Tree Generation
 A tree having n nodes and n-1 edges is spanning tree of a graph. A
preferable and efficient algorithm is one that generates trees by selecting only the
minimal cost edges of the graph in such a way that it will not produce cycle. The
present algorithm is not required to test circuits for the generation of minimum
spanning tree. Therefore, the new spanning tree generation algorithm is more
efficient in terms of the time complexity and required execution time. In this
algorithm, first we calculate degree factor of every node and then identify a node
with maximum degree factor. This node will be used to identify a minimum weight
edge incident to it. Then the graph G is to be reconstructed by removing the node of
higher degree factor and its incident edges. This minimum weight edge to be
included in the list of minimum spanning tree (MST), S. This process is to be
continued till the (n-1) edges does not include in the MST, S.

Theorem 1: A spanning tree S of a weighted connected graph G is the minimal
weight spanning tree if and only if there exist no other spanning tree of G at a
distance of one from S whose weight is smaller than that of S.

Proof: Let S1 be a spanning tree in graph G satisfying the hypothesis of the theorem
there is no spanning tree at a distance of one (of G) from S1 which is smaller than S1.
If S2 is the smallest spanning tree in G, the weight of S1 will also be is equal to that
of S2. The spanning tree S2 is smallest if and only if, it satisfies the hypothesis of the
theorem.
Suppose, an edge e in S2 is selected based on the higher degree factor of node in the
graph G but it is not in S1. Adding e to S1 forms a fundamental circuit with branches
of S1. Some of the branches in S1 that form fundamental circuit with e in S2; each of
the branches of S1 has weight either smaller than or equal to e because S1 is minimal
weight. Amongst all these edges of circuit but not in S2, at least one, say b, must
form fundamental circuit in S2 containing e. So, b must have same weight as e.
Therefore, spanning tree ())(11 beSS −∪= , obtained from S1, though one cycle
exchange, has same weight as S1. S1 has one more edge common with S2 and it
satisfies the condition of theorem.

Theorem 2: An edge e corresponding to the node of highest degree factor in the
graph G forms a spanning tree, if it has minimal weight.

Proof: A spanning tree S of a graph G contains all the vertices (exactly once) and n-
1 edges, where n is the number of vertices in the graph G. An edge e is to be selected
based on the degree factor of the node. The degree factor of the node shows how

Generation of Minimal Spanning Tree Based on Analytical Perspective of
Degree Sequence

213

many edges are incident to a particular node. The highest degree factor of a node,
the number of edges incident to which is minimum with at least one edge whose
weight is minimal, is to be included in the minimum spanning tree S.

Theorem 3: The combination of n-1 distinct edges forms spanning tree according to
theorem 1, if it is circuitless.

Proof: The n-1 edges combinations of a graph must contain all the vertices of the
graph. These combinations obviously either contain a circuit or a spanning tree of
the graph. Since, this algorithm prohibits the generation of circuit, therefore, n-1
distinct edge combination form spanning tree.

Theorem 4: A Sequence ndddddD ,....,,,, 4321= of nonnegative integers
with nddddd ≥≥≥≥4321 , n ≥ 2, 11 ≥d is graphical if and only if the
sequence n2d1d432 d,....,d,1d,....,1d,1d,1d D

11 ++ −−−−=′ is graphical [1,2].

Proof: Let D′ is a graphical sequence. There exists a graph G′ of order n−1, such
that D′ is the degree sequence of G′ . Therefore, the vertices of G′ can be labeled
as n32 V.,,V,V … ; such that

12;

12;1
)deg(

1

1

≤≤+
+≤≤−

=
idd
did

V
i

i
i

A new graph G can be constructed by adding a new vertex 1V and the 1d edges
12; 11 +≤≤ diVV i . Then in G, nifor ≤≤= 1d)deg(V ii and so

nD d,,d,d,d,d 4321 …= is graphical.

Conversely, let D be a graphical sequence. Hence there exist graphs of order n with
degree sequence D. Among all such graphs let G be one, such
that { }n4321 V,,V,V,V,VV(G) …= ; n.,1,2,3,ifor d)deg(V ii …== and the

∑ =id even number, the sum of degrees of the vertices adjacent with 1V is

maximum. We show first that 1V is adjacent to vertices having
degrees 1d432 1

d,,d,d,d +… .

Suppose, to the contrary, that 1V is not adjacent to vertices having
degrees 1d432 1

d,,d,d,d +… . Then there exist vertices rV and sV with sr d d f such

that 1V is adjacent to sV , but not to rV . Since, the degree of rV exceeds that of sV ,
there exists a vertex tV , such that tV is adjacent to rV but not to sV . Removing the

degrees sV1V and trVV and adding the edges rV1V and tsVV results in a graph G

Sanjay Kumar Pal and Samar Sen Sarma

214

having the same degree sequence as G. However, in G the sum of the degrees of
the vertices adjacent to 1V is larger than that in G, contradicting the choice of G.
Thus, 1V is adjacent with vertices having degrees 1d432 1

d,,d,d,d +… , and the

graph)V-(G 1 has degree sequence D′ , so D′ is graphical.

4. Algorithm for Generation of Minimal Spanning Tree
 Initially we generate random weighted graph according to the given number of
nodes and edge density. The weight matrix of the randomly generated graph is used
as input for generation of minimum spanning tree of the graph. The output of the
algorithm is minimum weight spanning tree where each node of the graph is
represented by the edge number from 0,1,2,……..,n. The weight, w of the edge is
stored in the adjacency matrix if there is an edge between the nodes.

Step 1: Generate random weighted graph and corresponding weight matrix
according to the given number of nodes and edge density.
Step 2: Calculate Degree Factor of all the nodes of graph G.
Step 3: Select a minimum weight edge Eei ∈ of a node Gv∈ whose degree
factor is higher compared to other nodes.
Step 4: Put ie into MST, S and construct new graph G′ removing the highest
degree factor node and its incidence edges from G.
Step 5: Find out the degree factor of newly constructed graphG′ .
Step 6: Apply iteratively from step 2 to step 5, till (n-1) edges are not
selected in MST.
Step 7: Calculate sum of the weight of the edges in the MST, S.
Step 8: Stop.

6. Complexity of the Proposed Algorithm

 The Circuit testing is not required in the minimum spanning tree generation
algorithm because we have always chosen a node v in the graph G exactly once for
the MST, S. The sorting of edges and finding the minimum weight edges neighbors
of the constructed tree is not required. The time complexity of new algorithm is less
than)log(ENO and it is reduced due to non requirement of checking of circuit in
generation of tree. The memory space required to execute the program of new
algorithm is 2n where n is the number of vertices of the graph G.

7. Results and Conclusion

Hardware used to carry out this experiment is Pentium IV computer and 1
GB DDR2 RAM. The program is written in ‘C’ programming language and Turbo
‘C’ compiler is used for compilation and execution purpose. The experiment has
been performed on several graphs of different types.

Generation of Minimal Spanning Tree Based on Analytical Perspective of
Degree Sequence

215

 The storage requirement of this algorithm is proportional to 2n . The experimental
result of the algorithms is given in Table 1 as comparative study.

Execution Time of Algorithm * 100 (in Second) No. of
Nodes

No. of
Edges Kruskal Prim New Algorithm

3 3 1.70 1.95 1.70
4 4 4.56 4.46 4.54
4 5 4.67 4.72 4.61
5 8 7.36 7.42 7.42
6 12 8.84 8.90 8.67
7 13 18.78 16.75 16.32
7 17 19.12 20.59 18.88
8 25 18.89 18.89 18.44
9 21 24.44 21.75 21.44
9 32 37.35 31.69 30.89

10 18 33.28 32.76 32.14
10 42 38.66 36.80 35.78
11 27 36.80 36.74 35.83
11 50 40.18 37.56 36.47
12 20 36.68 37.14 35.82
12 53 51.30 40.32 39.22
13 31 73.60 51.74 50.98
13 70 79.94 55.03 53.24
14 55 71.94 67.87 65.93
14 82 124.68 120.20 117.32
15 32 87.60 73.68 72.99
15 72 121.65 101.85 99.12
16 48 98.25 74.35 72.67
16 108 123.70 118.65 114.21
17 41 121.40 109.30 106.78
17 55 144.75 124.55 120.27
18 76 146.35 125.85 121.02
19 68 177.95 156.80 151.11
20 95 317.60 231.81 223.73
21 74 343.80 312.60 292.89
22 69 530.6 292.2 280.11
23 126 596.40 336.63 318.32
24 82 561.22 441.02 424.79
25 78 540.34 434.77 408.31
30 30 662.32 616.43 596.33

Table1: Execution time of Kruskal, Prim and New algorithms

Sanjay Kumar Pal and Samar Sen Sarma

216

REFERENCES

1. A. Rakshit, A. K. Choudhury, S. S. Sarma and R. K. Sen, “An Efficient Tree
 Generation Algorithm,” IETE, vol. 27, pp. 105-109, 1981.

2. Sanjay Kumar Pal and Samar Sen Sarma, “An Efficient All
Spanning Trees Generation Algorithm”, IJCS, vol. 2, No. 1, pp. 48 – 59,
January 2008.

3. N. Deo, “Graph Theory with Application to Engineering and Computer
Sciences,” PHI, Englewood Cliffs, N. J, 2007.

4. Thomas H. Coremen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, “Introduction to Algorithms”, PHI, Second Edition, 2008.

5. Harowitz Sahnai & Rajsekaran, “Fundamentals of Computer Algorithms”,
Galgotia Publications Pvt. Ltd., 2000.

6. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, “Algorithms”, Tata
McGraw-Hill, First Edition, 2008.

7. Arumugam S. and Ramachandran S., Invitation to Graph Theory, Scitech
Publications (INDIA) Pvt. Ltd., Chennai, 2002.

8. R.J. Wilson, “History of Graph Theory”, Section 1.3, Handbook of Graph
Theory, pp. 29 – 49, 2004.

9. F. A. Muntaner-Batle and M. Rius Font, “A Note on degree Sequence of Graphs
 with restrictions”,
http://upcommons.upc.edu/eprints/bitstream/2117/1490/1/sequences.pdf

10. J. A. Bondy and U. S. R. Murty, “Graph Theory with Applications”, The
Macmillan Press, Great Britain, 1976.

11. http://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm.
12. http://en.wikipedia.org/wiki/Degree_(graph_theory).
13. Kenneth Sorensen and Gerrit K. Janssens, “An Algorithm to Generate All

Spanning Trees of a Graph in Order of Increasing Cost,” Pesquisa Operacional,
 vol. 25, pp. 219- 229, 2005.

14. S. Chatterjee and S. S. Sarma, “In Search of a Versatile and Flexible Graph Mod
el to Implement Computer Network”, Proceeding of International Conference on
 Communications, Devices and Intelligent Systems, pp. 635-638, 2004.

