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ABSTRACT 

This paper considers generation of Minimal Spanning Trees (MST) of a simple 
symmetric and connected graph G. In this paper, we propose a new algorithm to find 
out minimum spanning tree of the graph G based on the degree sequence factor of 
nodes in graph. The time complexity of the problem is less than 

)log( ENO compared to the existing algorithms time complexity, 

( ) CEEO +log  of Kruskal algorithm, which is optimum. The goal is to design an 
algorithm that is simple, elegant, efficient, easy to understand and applicable in the 
field of networking design, mobile computing and engineering. 
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1. Introduction 

Graph theory is one of the rapidly developing branches of mathematics and 
finds wide applicability in computer science [8]. Most of the mathematical and 
scientific problems can be formulated in terms of Graph Theory [3]. It is also 
applied in social sciences, linguistic, physical sciences, communication engineering 
and plays an important role in switching theory, artificial intelligence, formal 
languages, computer graphics, operating systems, compiler writing, information 
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organization, and retrieval [3, 4, 5].  Graphs, especially trees and binary trees are 
widely used in the representation of data structure [4, 5, 6]. 
 A Spanning Tree is a tree of a connected graph G, which connect all vertices 
of the graph. Generation of a single spanning tree for a simple, symmetric and 
connected graph G is well known polynomial time solvable problem [3, 4]. 
Enumeration of spanning tree in undirected simple connected graphs is an important 
issue in many engineering networking design, mobile communication and scientific 
problems [10, 13].  Applying graph theory easily solves most of the problems in the 
fields like networking and circuit analysis. In 1981 coauthor Samar Sen Sarma 
published in his paper an algorithm, one of the most important graph theory 
problems; generation of all spanning trees of a simple connected graph [1]. The 
spanning trees generated by this algorithm are all distinct i.e. there is no possibility 
of generation of duplicate spanning trees, and also prohibit generation of all the non-
tree sub-graphs. 

Many practical applications, particularly design of electrical circuits, 
communication networks and transportation networks can be formulated as 
optimization of minimal spanning tree problem [1, 2, 3, 10, 14]. The goal of 
optimization of minimal spanning tree is to find a solution that is appropriate for a 
particular application.  When studying diverse problems, one often makes an 
assumption of general position:  for minimal spanning trees, one can infinitesimally 
perturb the edge weights so that all are distinct; in this way picking out a unique 
solution. Several algorithms exist for generation of Minimal Spanning Tree. Otakar 
Boruvka described an algorithm for finding a Minimal Spanning Tree in a graph for 
which all the edge weights are distinct [11]. In 1957, Computer Scientist C. Prim 
discovered another algorithm that finds a minimal spanning tree for a connected 
weighted graph [3]. This algorithm continuously increases the size of a tree starting 
with a single vertex until it spans over all the vertices. This algorithm was actually 
discovered in 1930 by mathematician Vojtech Jarnik. Joseph Kruskal described 
another minimal spanning tree algorithm where total weight of all the edges of the 
tree is minimized [3, 4]. Edsger Dijkstra in 1959 discovered a minimal spanning tree 
algorithm that solves the single source-shortest path problem for a directed graph 
with non-negative edge weights [3, 4, 5, 6]. 

Several distinct techniques exist for generation of all spanning trees of a 
graph[1, 2, 13]. In 2007, Authors have discussed an algorithm where trees are 
generated by examining 1

e
nC −  sets of edges where e is the number of edges and n is 

the number of vertices of a simple connected graph eliminating some set of edges 
which form circuit [2].Here, in this paper we introduce a new algorithm for 
generation of minimal weight spanning tree of a graph which requires less execution 
time and memory space compared to the existing algorithm. The algorithm is based 
on the degree factor of the degree sequence and the weight of edges in the graph G. 
A sequence nddddd ,....,,,, 4321  of nonnegative integers is called a degree 
sequence of given graph G, if the vertices of G can be labeled n4321  v,, v, v, v,v …  
so that degree id=iv ; for all i [7]. The sum of the integers nddddd ,....,,,, 4321 is 
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equal to 2e, where e is the number of edges in a graph G. For a given graph G, a 
degree sequence of G can be easily determined [7, 9]. Now the question arises that, 
given a sequence nddddd ,....,,,, 4321=ξ of nonnegative integers, under what 
conditions does there exist a graph G? A necessary and sufficient condition for a 
sequence to be graphical was found by Havel and later rediscovered by Hakimi [7, 
9, 12]. Based on the above concept here, we introduce a new technique to find out a 
minimum spanning tree of a graph G considering the degree sequence factor of the 
nodes. The time complexity of the new algorithm is optimal in comparison to the 
algorithms of Kruskal and Prim and also optimized the space complexity as well in 
the new algorithm. 
 
2. Terminology 
 
2.1 Realisation:  
A sequence nddddd ,....,,,, 4321=ξ  of nonnegative integers is said to be graphic 
sequence if there exists a graph G whose vertices have degree id  and G is called 
realization of ξ. 
 
2.2  Spanning Tree: A Spanning Tree S is a tree of a connected graph G, 
which touches all vertices of the graph. A spanning tree has n vertices and 
exactly (n-1) edges of a graph G. 
 
2.3 Minimal Spanning Tree: Let G be a connected, edge-weighted graph. A 
minimal spanning tree is a subgraph of G that satisfies the following properties:  

• It is a tree, that is, it is connected and has no cycles.  
• It is spanning, that is, it contains all vertices of G.  
• It has minimal total edge-weight among all possible trees.  

 
2.4  Adjacency Matrix: For a graph G of n vertices and e edges, if, set of vertices, 
V(G) = {v1, v2, v3,……, vn} and set of edges E(G) = {e1, e2, e3,……, en}. The 
adjacency matrix A, of weighted graph G, is nn× matrix and it can be represent by 
A = [aij], where  
  

 




=
0

ij
ij

w
a     

 
2.5  Degree of a vertex: The degree di of a vertex vi in a graph G is the 
number of edges connected with vi. In other words, degree di is the number of 
vertices adjacent to the vertex vi. 
 
2.6  Node Degree Factor: Node degree factor of each node vi is the ratio between 
summations of degree of all nodes of graph G and degree of a particular node i.e. 

if there is an edge between , ( )i jv v E G∈ and ijw  is weight of edge 
if there is no edge 
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3. Minimal Spanning Tree Generation 
 A tree having n nodes and n-1 edges is spanning tree of a graph. A 
preferable and efficient algorithm is one that generates trees by selecting only the 
minimal cost edges of the graph in such a way that it will not produce cycle. The 
present algorithm is not required to test circuits for the generation of minimum 
spanning tree. Therefore, the new spanning tree generation algorithm is more 
efficient in terms of the time complexity and required execution time. In this 
algorithm, first we calculate degree factor of every node and then identify a node 
with maximum degree factor. This node will be used to identify a minimum weight 
edge incident to it. Then the graph G is to be reconstructed by removing the node of 
higher degree factor and its incident edges. This minimum weight edge to be 
included in the list of minimum spanning tree (MST), S. This process is to be 
continued till the (n-1) edges does not include in the MST, S. 
 
Theorem 1: A spanning tree S of a weighted connected graph G is the minimal 
weight spanning tree if and only if there exist no other spanning tree of G at a 
distance of one from S whose weight is smaller than that of S. 
 
Proof:  Let S1 be a spanning tree in graph G satisfying the hypothesis of the theorem 
there is no spanning tree at a distance of one (of G) from S1 which is smaller than S1. 
If S2 is the smallest spanning tree in G, the weight of S1 will also be is equal to that 
of S2. The spanning tree S2 is smallest if and only if, it satisfies the hypothesis of the 
theorem.  
Suppose, an edge e in S2 is selected based on the higher degree factor of node in the 
graph G but it is not in S1. Adding e to S1 forms a fundamental circuit with branches 
of S1. Some of the branches in S1 that form fundamental circuit with e in S2; each of 
the branches of S1 has weight either smaller than or equal to e because S1 is minimal 
weight. Amongst all these edges of circuit but not in S2, at least one, say b, must 
form fundamental circuit in S2 containing e. So, b must have same weight as e. 
Therefore, spanning tree ( ))(11 beSS −∪= , obtained from S1, though one cycle 
exchange, has same weight as S1. S1 has one more edge common with S2 and it 
satisfies the condition of theorem. 
   
Theorem 2: An edge e corresponding to the node of highest degree factor in the 
graph G forms a spanning tree, if it has minimal weight. 
 
Proof: A spanning tree S of a graph G contains all the vertices (exactly once) and n-
1 edges, where n is the number of vertices in the graph G. An edge e is to be selected 
based on the degree factor of the node. The degree factor of the node shows how 
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many edges are incident to a particular node. The highest degree factor of a node, 
the number of edges incident to which is minimum with at least one edge whose 
weight is minimal, is to be included in the minimum spanning tree S.  
 
Theorem 3: The combination of n-1 distinct edges forms spanning tree according to 
theorem 1, if it is circuitless.   
 
Proof: The n-1 edges combinations of a graph must contain all the vertices of the 
graph. These combinations obviously either contain a circuit or a spanning tree of 
the graph. Since, this algorithm prohibits the generation of circuit, therefore, n-1 
distinct edge combination form spanning tree.  
 
Theorem 4: A Sequence ndddddD ,....,,,, 4321=  of nonnegative integers 
with nddddd ≥≥≥≥ ....4321 , n ≥ 2, 11 ≥d is graphical if and only if the 
sequence n2d1d432 d,....,d,1d,....,1d,1d,1d D

11 ++ −−−−=′  is graphical [1,2]. 
 
Proof: Let D′  is a graphical sequence. There exists a graph G′  of order n−1, such 
that D′  is the degree sequence of G′ . Therefore, the vertices of G′  can be labeled 
as n32 V.,,V,V … ; such that 
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A new graph G can be constructed by adding a new vertex 1V  and the 1d  edges 
12; 11 +≤≤ diVV i . Then in G, nifor ≤≤= 1d  )deg(V ii and so 

nD d,,d,d,d,d 4321 …=  is graphical.  
 
Conversely, let D be a graphical sequence. Hence there exist graphs of order n with 
degree sequence D. Among all such graphs let G be one, such 
that { }n4321 V,,V,V,V,VV(G) …= ; n.,1,2,3,ifor  d)deg(V ii …== and the 

∑ =id  even number, the sum of degrees of the vertices adjacent with 1V  is 

maximum. We show first that 1V  is adjacent to vertices having 
degrees 1d432 1

d,,d,d,d +… .  

Suppose, to the contrary, that 1V  is not adjacent to vertices having 
degrees 1d432 1

d,,d,d,d +… . Then there exist vertices rV  and sV  with sr d  d f such 

that 1V  is adjacent to sV , but not to rV . Since, the degree of rV  exceeds that of sV , 
there exists a vertex tV , such that tV  is adjacent to rV  but not to sV . Removing the 

degrees sV1V  and trVV  and adding the edges rV1V  and tsVV  results in a graph G  
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having the same degree sequence as G. However, in G  the sum of the degrees of 
the vertices adjacent to 1V  is larger than that in G, contradicting the choice of G. 
Thus, 1V  is adjacent with vertices having degrees 1d432 1

d,,d,d,d +… , and the 

graph )V-(G 1  has degree sequence D′ , so D′  is graphical. 
 
4. Algorithm for Generation of Minimal Spanning Tree 
       Initially we generate random weighted graph according to the given number of 
nodes and edge density. The weight matrix of the randomly generated graph is used 
as input for generation of minimum spanning tree of the graph. The output of the 
algorithm is minimum weight spanning tree where each node of the graph is 
represented by the edge number from 0,1,2,……..,n. The weight, w of the edge is 
stored in the adjacency matrix if there is an edge between the nodes.  
 
Step 1: Generate random weighted graph and corresponding weight matrix 
according to the given number of nodes and edge density. 
Step 2: Calculate Degree Factor of all the nodes of graph G. 
Step 3: Select a minimum weight edge Eei ∈  of a node Gv∈  whose degree 
factor is higher compared to other nodes. 
Step 4: Put ie  into MST, S and construct new graph G′  removing the highest 
degree factor node and its incidence edges from G. 
Step 5: Find out the degree factor of newly constructed graphG′ . 
Step 6: Apply iteratively from step 2 to step 5, till (n-1) edges are not 
selected in MST. 
Step 7: Calculate sum of the weight of the edges in the MST, S. 
Step 8: Stop. 
 
6. Complexity of the Proposed Algorithm 

 The Circuit testing is not required in the minimum spanning tree generation 
algorithm because we have always chosen a node v  in the graph G exactly once for 
the MST, S. The sorting of edges and finding the minimum weight edges neighbors 
of the constructed tree is not required. The time complexity of new algorithm is less 
than )log( ENO and it is reduced due to non requirement of checking of circuit in 
generation of tree. The memory space required to execute the program of new 
algorithm is 2n  where n is the number of vertices of the graph G.   
 
7. Results and Conclusion 

Hardware used to carry out this experiment is Pentium IV computer and 1 
GB DDR2 RAM. The program is written in ‘C’ programming language and Turbo 
‘C’ compiler is used for compilation and execution purpose. The experiment has 
been performed on several graphs of different types. 
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 The storage requirement of this algorithm is proportional to 2n . The experimental 
result of the algorithms is given in Table 1 as comparative study. 
 

Execution Time of Algorithm * 100 (in Second) No. of  
Nodes 

No. of 
Edges Kruskal Prim New Algorithm 

3 3 1.70 1.95 1.70 
4 4 4.56 4.46 4.54 
4 5 4.67 4.72 4.61 
5 8 7.36 7.42 7.42 
6 12 8.84 8.90 8.67 
7 13 18.78 16.75 16.32 
7 17 19.12 20.59 18.88 
8 25 18.89 18.89 18.44 
9 21 24.44 21.75 21.44 
9 32 37.35 31.69 30.89 

10 18 33.28 32.76 32.14 
10 42 38.66 36.80 35.78 
11 27 36.80 36.74 35.83 
11 50 40.18 37.56 36.47 
12 20 36.68 37.14 35.82 
12 53 51.30 40.32 39.22 
13 31 73.60 51.74 50.98 
13 70 79.94 55.03 53.24 
14 55 71.94 67.87 65.93 
14 82 124.68 120.20 117.32 
15 32 87.60 73.68 72.99 
15 72 121.65 101.85 99.12 
16 48 98.25 74.35 72.67 
16 108 123.70 118.65 114.21 
17 41 121.40 109.30 106.78 
17 55 144.75 124.55 120.27 
18 76 146.35 125.85 121.02 
19 68 177.95 156.80 151.11 
20 95 317.60 231.81 223.73 
21 74 343.80 312.60 292.89 
22 69 530.6 292.2 280.11 
23 126 596.40 336.63 318.32 
24 82 561.22 441.02 424.79 
25 78 540.34 434.77 408.31 
30 30 662.32 616.43 596.33 

 
Table1: Execution time of Kruskal, Prim and New algorithms 
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