
Journal of Physical Sciences, Vol. 13, 2009, 1-12 
ISSN: 0972-8791 : www.vidyasagar.ac.in/journal 
 

1 

Reliability Analysis for nNon-Independent and 
Non-Identical Series Systems Using Masked Data 

 
Fan Zhang and Yi-min Shi 

Department of Applied Mathematics, Northwestern Polytechnical University , Xi'an 
710072, P. R. China  
ymshi@nwpu.edu.cn 

 
Received April 21, 2009; accepted July 17, 2009 

 
ABSTRACT 

Based on the masked data, the reliability of n  non-independent and non-identical 
series system subjected to 1+n sources of fatal shocks is investigated. We get the 
parameter estimations as well as reliability estimations by adopting Bayes approach. 
Also, a numerical simulation example is given to illustrate how one can utilize the 
method to tackle the practical problem 
Keywords：masked data；non-independent system；Bayes approach；reliability 
analysis; shock model 

1.  Introduction 

In reliability analysis, estimations of components reliabilities are often obtained 
through the analysis of system life data. Under ideal circumstances, this system life 
data contains the failure time along with information on the exact component causing 
the system failure. However, in some cases, the exact component responsible for the 
system failure can not be identified due to the cost of failure diagnosis and test, time 
constraints, the destructive nature of some component and so on. Instead, it is 
assumed that the component causes the system failure belongs to some subset of the 
components which considered potentially responsible for the failure. In this case, the 
cause of failure is masked. 

Various studies used masked data to estimate the unknown parameters in a 
system. A. M. Sarhan [1] considered the maximum likelihood estimations(MLE) and 
Bayes estimations of exponential components，and he presented MLE of unknown 
parameters of Weibull failure rate components for the cases of two-component and 
three-component series systems[2]. A. M. Sarhan and Ahmed H. El-Bassiouny 
dicussed the case of parallel systems of complementary exponential components [3]. 
Most authors assumed that components in a system must be independent in order to 
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construct models. However, in some cases, it is difficult to determine the 
independence. Moreover there exists some dependent and constrained relation 
between units very often. Thus, it is important and meaningful to discuss the 
reliability of non-independent series system using masked data.  

Recently, several authors used shock model to estimate the parameters in 
non-independent series system. Such as, Grabski and Sarhan[5] and Sarhan [6]obtained 
estimations of some reliability measures for series and parallel systems with two 
non-independent and non-identical components; Awad El-Gohary[7] and Awad 
El-Gohary and Sarhan [9] deduced Bayes estimators for the parameters included in a 
two and three non-independent and non-identical component series system. 
Hongping Wu and Guofen Zhang [10] presented a Bayesian approach for estimating 
the unknown parameters in a n  non-independent and non-identical series system 
subjected to 1+n sources of fatal shocks. However, there is very little statistical 
analysis of non-independent system under masked data at present.  

In this paper, we discuss how to use the masked data of systems to analyze the 
system and component reliabilities of n  non-independent and non-identical series 
system subjected to 1+n  sources of fatal shocks which was proposed in [10]. 
Simulation studies are also done in order to explain how one can utilize the 
theoretical results obtained. 

2. Likelihood function 

Hongping Wu and Guofen Zhang [10] constructed the mathematical model of n  
non-independent and non-identical series system. The model is described as 
followings: The system consists of n  components connected in series. There are 

1+n  independent sources of fatal shocks directed to the system. A shock from the 
thi source destroys the thi component, ni ,...,2,1= , while the shock from source 

1+n  destroys all the components of the system. A shock from source i occurs at a 
random time, say iU . The distribution function of iU  is the following form:  

)}
2
1(exp{1)( 2tttUP iii βα +−−=≤ , 0≥t , 0, >ii βα , 1,...,2,1 += ni . 

Assuming iT  denotes the lifetime of component i , then ),min( 1+= nii UUT , 

ni ,...,2,1= . According to the independence of the shocks, the reliability function of 
component i  is the following form: 
      ),()),(min()(),,,;( 1111 tUtUPtUUPtTPtR niniinniii >>=>=>=βαβα ++++     

]})(
2
1)[(exp{)()( 2

111 tttUPtUP ninini +++ β+β+α+α−=>>= . 
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where 0≥t , 0,,, 11 >βαβα ++ nnii . 

The system lifetime, say aT , satisfies ),...,,min( 21 na TTTT = . Let 

),...,,( 121 += nαααα , ),...,,( 121 += nββββ , then the survival function of the system is 

given by 

)}
2
1(exp{)(),;( 2

1

1
tttTPtR jj

n

jaa βαβα +Σ−=>=
+

=
, 0≥t , 0, >ii βα , 1,...,2,1 += ni  

 Assuming that m  identical systems of the described type are put on the life 

test，and the test is terminated if all the systems have failed. Let iS denote the set of 

components that possibly cause the system i  to fail, and let is denote the realized 
set for iS , then the observed data is ),(),...,,( 11 mm stst . It is explicit of the true cause 
of failure of system i  when }{ jSi = , 1,...,2,1 += nj , where }1{ += nSi  represents 
the all components are failure. On the other hand, the true cause of failure is masked 
when SnSi =+= ˆ}1,...,2,1{ . Let iK denote the index of the component actually 
causing the thi system to fail. As for the thi system, the likelihood function 

of ),( ii st is: ),|(),(),( 3
1 jKtsPjKtPstP iiiiijii ==Σ= = , where ),|( jKtsP iii =  is the 

masking probability and it becomes 0 if isj∉ . Here we suppose that the masking 

probability is independent with the cause of failure, that is, for the fixed isj∈ ，

),|(),|( jKtTsSPjKtTsSP iiiiiiiiii ′=======  for all isj ∈′ . Therefore, we get 
the simplified likelihood function:  

)],([)],([),(
1

111
jKtPstPdataL ii

n

jsj

m

iiisj

m

i ii

=ΣΣΠ=ΣΠ=
+

=∈=∈=
θ , 

where θ  denotes the unknown parameters and data  denotes the observed data. 

 Let 
knkkk xxx ,2,1, ,...,,  be the observed system time to failure when }{kSi = . It 

means that kn  is the number of the observations when }{kSi = . Let Nyyy ,...,, 21 be 

the observed system time to failure when the causing system failure is masked. That 
is, N denotes the number of the observations when SSi = . The likelihood function in 
this case reduces to 

)}1,(...)1,({),(
|1}{|1

1

1
+=++=Π=ΠΠ=

====

+

=
nKtPKtPkKtPL iiii

N

Ssiii

n

ksi

n

k i

k

i
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 Noted that Nnm i

n

i
+Σ=

+

=

1

1
 and  

)}
2
1(exp{)(),...,,,()1,( 2

1

11112 ijij

n

jiiniiiiiiii ttttUtUdttUttPKtP βαβα +Σ−+=>>+<<==
+

=
+ . 

Similarly, )}
2
1(exp{)(),( 2

1

1 ijij

n

jikkii tttkKtP βαβα +Σ−+==
+

=
, 1,...,2,1 += nk . 

  The likelihood function in this case becomes 

)]
2
1(exp[)()]

2
1(exp[)( 2

11

2
,

1

1,1

1

1 , ijij

N

ji

N

ijikj

n

jikkk

n

i

n

k
yyyxxxL

ik

k

βαβαβαβα +Σ−′+′Π+Σ−+ΠΠ=
==

+

==

+

=
 

)]~(exp[)()(
1

11,1

1

1
TTyx jj

n

ji

N

iikkk

n

i

n

k

k

βαβαβα +Σ−′+′Π+ΠΠ=
+

===

+

=
. 

where 11 ... +++=′ nααα , 11 ... +++=′ nβββ , i

m

i
tT

1=
Σ= , 2~ 2

1 i

m

i
tT

=
Σ= . 

  Applying the binomial expansion, )( ,1 ijjj

n

i
x

j

βα +Π
=

can be written as: 

j

jjjj

j

j

j
k

k
j

kn
j

k
n

n

k
C τβα −

=
Σ

0
 , where

jk

jk

jk
j ijij

iii
iiik xx ,,

...
,...,, 1

21

21

⋅⋅⋅Σ=τ

≠≠≠

. )(
1 i

N

i
yβα ′+′Π

=
 can be written as:  

),(

0000000

11

21

11

2

1

1
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r
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)1(122111 )()()(
1

1
+− δ+δ−+⋅⋅+⋅δ−+δ−−

+

=
αΠ× nvnvnnnvv rrrrrrrN

v

n

v
 

)1(122111 )()()(
1

1
+− δ+δ−+⋅⋅⋅+δ−+δ−

+

=
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where 
r

r
r

ii
iii

iiir yy ⋅⋅⋅Σ=
≠≠≠

1

21
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...
,...,,

τ , 




≠
=

=
jv
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vj 0
1
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and 
!)!)!...(()!(!)!)!...(()!(

!

12111211

),(
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lr
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−−−−−−−

=
−−
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Thus, the likelihood function can be written as in the following form: 

)]~(exp[),;(
1

1

1

1

1

1
),,( TTCtL jj

n

j
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1111 knrrNA −+−−= , iiiii knrrA −+−= −1 ),..,2( ni = , 111 +++ −+= nnnn knrA , 
and 111 klrB +−= , iiii kllB +−= −1  ),..,2( ni = , 11 ++ += nnn klB . 

3. Bayes analysis  

In this section, we will use Bayesian approach to estimate the unknown 
parameters and the reliability functions of components and system. The following 
assumptions will be considered. 
A1. vv βα , , 1,...,2,1 += nv  are independent with each other. 
A2. vv βα , , 1,...,2,1 += nv  have gamma prior distributions with known parameters 

vv hg ,  and vv dc , . It means that ),(~| vvv hgt Γα , ),(~| vvv dct Γβ . 

A3. The loss incurred when the vector of unknown parameters βα ,  are estimated 

by βα ˆ,ˆ  are a quadratic. That is , the loss function is   

2
2

1

1

2
1

1

1
)ˆ()ˆ()ˆ,ˆ;,( vvv

n

vvvv

n

v
kkL ββααβαβα −Σ+−Σ=

+

=

+

=
. 

 Using the assumption 1 and 2, the joint prior probability density function (pdf) 

of βα , , say ),( βαg , takes the following form: 

vvv
v

vvv
v

dc
v

v

c
v

n

v

hg
v

v

g
v

n

v
e

c
de

g
hg βα βαβα −−

+

=

−−
+

= Γ
Π

Γ
Π= 1

1

1

1
1

1 )()(
),( . 

 Now we are ready to present a theorem that gives the joint posterior pdf of 

),( βα  given the observed data. 

Theorem 1 Given the observed data and under assumptions 1 and 2, the joint 

posterior pdf of βα ,  is 

)]~(exp[)](exp[
)0(

1)|,(
1

1

1
1

1

1
1

1

),,( TdThCdatag vvvv

n

v

cB
v

n

v

gA
v

n

v

lrk
m

vvvv +−+−ΠΠΠ⋅Σ⋅⋅⋅Σ
Φ

=
+

=

−+
+

=

−+
+

=
βαβατβα

where 
vvvv cB

v

vv
n

vgA
v

vv
n

v

lrk
m dT

cB
hT

gAC +

+

=+

+

= +
+Γ

Π
+

+Γ
Π⋅Σ⋅⋅⋅Σ=Φ

)~(
)(

)(
)()0(

1

1

1

1

),,(τ . 

Proof Using the Bayes theorem, the joint posterior of ),( βα  given the observed data 

is related to the following relation, )0(/),|(),()|,( Φ= βαβαβα dataLgdatag , 
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where 

1111
11 11

),(),|()0( ++ΘΘ ΘΘ
β⋅⋅⋅βα⋅⋅⋅αβαβα⋅⋅⋅⋅⋅⋅=Φ ∫∫ ∫∫

+β+α βα
nn ddddgdataL

nn
 

vvv
cB
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vvvv
gA

v

n

v

lrk
m dTddThC vvvv βββααατ )]~(exp[)](exp[

0
1

1

10
1

1

1

),,( +−Π+−Π⋅Σ⋅⋅⋅Σ= ∫∫
+∞ −+

+

=

+∞ −+
+

=

vvvv cB
v

vv
n

vgA
v

vv
n

v

lrk
m dT

cB
hT

gAC +

+
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+

= +
+Γ

Π
+

+Γ
Π⋅Σ⋅⋅⋅Σ=

)~(
)(

)(
)( 1

1

1

1

),,(τ .□ 

Corollary 1 The marginal posterior pdf of vv βα , , 1,...,2,1 += nv , given the observed 
data is 

vvllv

vv
cB

v

vv
n

vgA
l

ll

Llvv
gA

v
lrk

mv dT
cB

hT
gAThCdatag

+

+

=+∈

−+

+
+Γ

Π
+

+Γ
Π×+α−α×⋅τΣ⋅⋅⋅Σ

Φ
=α

)~(
)(

)(
)()](exp[

)0(
1)|(

1

1

1),,(

llvvv

vv
cB

l

ll
LlgA

v

vv
n

vvv
cB

v
lrk

mv dT
cB

hT
gATdCdatag +∈+

+

=

−+

+

+Γ
Π

+

+Γ
Π×+−×⋅Σ⋅⋅⋅Σ

Φ
=

)~(
)(

)(
)()]~(exp[

)0(
1)|(

1

1

1),,( ββτβ

where }/{}1,...,2,1{ vnLv += . 
Proof The proof of this corollary can be reached by integrating the joint posterior pdf 

of ),( βα  given the observed data over all variables ll βα , , vLl∈  respectively. □ 

Lemma 1. The thr moment, ,...2,1=r , of the marginal posterior pdf of 
vv βα , , 1,...,2,1 += nv , are given in the following form: 

)0(/)()( ΦΦ=µ αα rvv
r ,  )0(/)()( ΦΦ=µ ββ rvv

r , 

where 
vvllvvvv cB

v

vv
n

vgA
l

ll
LlrgA

v

vvlrk
m dT

cB
hT

gA
hT

rgACr +

+

=+∈++ +
+Γ

Π
+

+Γ
Π×

+
++Γ

×⋅Σ⋅⋅⋅Σ=Φ
)~(

)(
)(

)(
)(

)()(
1

1

),,(τα  

and 
llvvvvvv cB

l

ll
LlgA

v

vv
n

vrcB
v

vvlrk
m dT

cB
hT

gA
dT

rcBCr +∈+

+

=++ +

+Γ
Π

+

+Γ
Π×

+

++Γ
×⋅Σ⋅⋅⋅Σ=Φ

)~(
)(

)(
)(

)~(
)()(

1

1

),,(τβ . 

Proof . The proof of this lemma can be reached as follows: 
 The thr  posterior moment of vv βα ,  are defined as the posterior expectation 

of r
v

r
v βα , , that is vv

r
v

r dtg
v

αααµα )|()( ∫= , vv
r
v

r dtg
v

βββµβ )|()( ∫= . Substituting the 

posterior pdf of vv βα , into these formulas and making some calculus arrangements, 
one can easily reach the proof. □ 

Theorem 2 Under the assumption A1- A3: 

B1. The Bayes estimators of vv βα ,  are respectively )1(ˆ
vv αµα = , )1(ˆ

vv βµβ = . 
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B2. The minimum posterior risk associated with the Bayes estimators vv βα ˆ,ˆ  are  

( )2)0(/)1()0(/)2()|( ΦΦ−ΦΦ=α ααπ vvdataR v , 

( )2)0(/)1()0(/)2()|( ΦΦ−ΦΦ=β ββπ vvdataR v .  

Proof The proof of this theorem depends on the assumption A3 .The Bayes 

estimators of vv βα , and the associated minimum posterior risk are defined 

respectively as the posterior expectation and posterior variance of vv βα , . Namely,  

)1()|(ˆ
v

dataE vv αµαα == , )1()|(ˆ
v

dataE vv βµββ == ,  

2)1()2( )()|()|(
vv

dataVardataR vv ααπ µµαα −== , 

2)1()2( )()|()|(
vv

dataVardataR vv ββπ µµββ −== . 

Substituting the thr moment, 2,1=r , of the posterior pdf of vv βα , , one can 

complete the proof of theorem. □ 

 The following theorems give the Bayes estimators and the associated minimum 
posterior risk for the value of reliability functions of components and system at a 

specified mission time 0t . 

Theorem 3 Under the assumptions A1-A3: 
C1. The Bayes estimator for the reliability function of thi component, ni ,...,2,1= , is 

)0(/)|)(()(ˆ )1(
00 ΦΦ==

iRii datatREtR . 

C2. The minimum posterior risk associated with the Bayes estimator )(ˆ
0tRi , ni ,...,2,1= , 

is 2)1()2(
)(ˆ )]0(/[)0(/

0
ΦΦ−ΦΦ=Ψ

iii RRtR , 

where 
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Proof (1) Under the assumption A3, the Bayes estimator for the value of reliability of 
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                 (2)  

The minimum posterior risk associated with )(ˆ
0tRi , say )(ˆ

0tRi
Ψ , is defined as the 

posterior variance of )( 0tRi . Namely, 2
00

2
)(ˆ )]|)(([]|)([

0
datatREdatatRE itR ii

−=Ψ . 

Similar to )|)(( 0 datatRE i , we can easily obtain ]|)([ 0
2 datatRE
i

. Thus, one can easily 

complete the proof. □ 

Theorem 4 Under the assumptions A1-A3: 
D1. The Bayes estimator for the reliability function of system is  
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)0(/)|)(()(ˆ )1(
00 ΦΦ==

aRaa datatREtR . 

D2. The minimum posterior risk associated with the Bayes estimator )(ˆ
0tRa is 

2)1()2(
)(ˆ )]0(/[)0(/

0
ΦΦ−ΦΦ=Ψ

aaa RRtR , 

where

vvvv
a

cB
vvv

n

v
gA

vvv
n

v
lrk

m
r

R rtdTcBrthTgAC +
+

=
+

+

=
+++ΓΠ+++ΓΠ⋅τΣ⋅⋅⋅Σ=Φ )

2
1~/()()/()( 2

0
1

1
0

1

1
),,()( ，

2,1=r . 
Proof The proof is similar to that of theorem 3. □ 

4. Numerical Simulation  
We show in this section how one can apply the previous theoretical results 

obtained. This section is devoted to present numerical results based on a large 
simulation study. We make simulation of a two components connected in series 

system. It is assumed in the simulation that 15.01 =α , 2.02 =α , 25.03 =α , 5.11 =β , 

22 =β , 5.23 =β and the prior distributions of ii βα ,  are )10,1(Γ  and )2,5(Γ  

respectively. 
It is assumed in this simulation that 10 systems were put on the life test. The 

masking level is 25%. Then the lifetime of each system and the set of components 
that may cause the system failure were observed. The simulated data are presented in 
Table 1. Based on the simulation data given in Table 1, the Bayes estimators of the 
parameters are computed. The specified mission time is 5.00 =t  while considering 
the reliability. Further, the percentage error associated with the estimators is 

computed. The percentage error associated with the estimator θ̂  of θ is given by 

%100/|ˆ|ˆ ×−= θθθθPE .The obtained results are presented in Table 2.  

Table 1 Simulated system lifetime data ( 10=n ) 
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Table 2 Bayes estimators with percentage error 
Parameter 1α 2α  3α  1β 2β  3β  1R  2R  aR  

True value 0.15 0.2 0.25 1.5 2 2.5 0.4966 0.4550 0.3499 
Estimation 0.1520 0.1572 0.1772 1.8344 2.0840 2.2753 0.5774 0.5585 0.4385 

PE 0.0134 0.2142 0.2913 0.2229 0.0420 0.0899 0.1627 0.2274 0.2530 
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