2023

M.Sc.

4th Semester Examination PHYSICS

PAPER: PHS-403.1 & 403.2

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers
in their own words as far as practicable.

Illustrate the answers wherever necessary.

SECTION—I (SEMICONDUCTOR DEVICE) PHS-403.1

- **1.** Answer any **two** questions from the following: $2 \times 2 = 4$
 - (a) Find an expression of hall mobility in a nondegenerate semiconductor.
 - (b) Find an expression of transport coefficient in a bipolar transistor (pnp) under common base configuration.

- (c) What are the criteria for obtaining –ve differential mobility region in the v_d vs ϵ curve of Gunn effect oscillator.
- (d) Explain how the channel can be opened in a MOSFET.
- **2.** Answer *any* **two** questions from the following : $4 \times 2 = 8$
 - (a) Describe in detail, the *I-V* curve of a tunnel diode.
 - (b) Prove that for a non-degenerate semiconductor mobility vary as $T^{-3/2}$ in the high temperature region.
 - (c) Explain in detail, the operation of MODFET.
 - (d) Describe in detail, how drift mobility of a carrier in a semiconductor can be determined experimentally.
- **3.** Answer *any* **one** question from the following: 8×1=8
 - (a) Explain what is Gunn effect oscillator and hence find an expression of electron temperature.
 - (b) Assuming Boltzmann transport equation, find an expression of conductivity in a non-degenerate semiconductor.

SECTION-II

(APPLIED OPTICS)

PHS-403.2

- **1.** Answer *any* **two** questions from the following : $2 \times 2 = 4$
 - (a) Why does crosstalk happen for copper wire communication?
 - (b) Calculate the carrier frequency and energy in eV for an optical communication system operating at λ = 1.55 μm.
 - (c) Write down the truth table of the tri-state AND gate.
 - (d) What is the difference between ordinary photography and holography?
- **2.** Answer *any* **two** questions from the following : $4 \times 2 = 8$
 - (a) A $\lambda = 1.3$ µm optical transmitter is used to obtain a digital bit stream at a bit rate of 2 Gb/s. Calculate the number of photons $N_{\rm ph}$ contained in a single 1 bit when the average power emitted by the transmitter is P = 4 mW. Assume that the 0 bit carry no energy.
 - (b) What is self-focusing? Determine the expression for self-focusing length. 1+3

- (c) Define the photosensitivity and the photoresponsivity of a photodetector. 2+2
- (d) How is holography recording done? 4
- **3.** Answer *any* **one** question from the following: $8 \times 1 = 8$
 - (a) (i) Why does a material become optically nonlinear and what are the characteristics of a non-linear optical material? How these materials are used in material sciences?
 - (ii) What is the advantage of a tri-state system over a binary system? How is optically tri-state generated?

 (2+1+2)+(1+2)
 - (b) What do you mean by the V-parameter of an optical fibre? Show how the number of modes allowed in fibre is calculated by using V-parameter. 3+5

