2023

M.Sc.

4th Semester Examination

PHYSICS

PAPER: PHS-402.1 & 402.2

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks.

Candidates are required to give their answers
in their own words as far as practicable.

Illustrate the answers wherever necessary.

SECTION-I

(NUCLEAR PHYSICS-II)

PHS-402.1

- 1. Answer any two questions from the following: 2×2=4
 - (a) What is the isotopic spin of deuteron? Justify your answer.

- (b) Calculate the energy of the proton detected at 90° when 2°1 MeV deuterons are incident on 27 Al to produce 28 Al with an energy difference Q = 5.5 MeV.
- (e) Why are the velocities of thermal neutrons in a reactor given by Maxwell distribution?
- (d) Write the disadvantages of reactor sources used for productions of neutrons.
- **2.** Answer any **two** questions from the following : $4 \times 2 = 8$
 - (a) (i) A crystal spectrometer for neutrons uses a rock salt crystal with a grating space of 2:18 A. The neutrons are detected at an angle of 15°. What is the energy of the neutrons selected in the first order diffraction?
 - (ii) What do you understand by the level width (I) and level separation (D) between the levels of a continuum in nuclear reactions? 2+2=4

- (b) The neutron and proton in the deuteron nuclide interact through a square well potential of width b=1.9 fm, and depth $V_0=40$ MeV in an l=0 state. Calculate the probability that the proton moves within the range of the deuteron. Use the approximation that $m_n=m_p=m, kb=\pi/2, k=\sqrt{m(V_0-\varepsilon_d)}/h$, and ε_d is the binding energy of the deuteron.
- (c) (i) What are the basic principles of velocity selector for neutron monochromator?
 - (ii) Correlates the fertile and fissile materials. 2+2-4
- (d) (i) What do you mean by nuclear reaction cross-section?
 - (ii) How are the magic numbers explained using shell model? 1+3=4
- **3.** Answer any **one** question from the following : $8 \times 1 = 8$
 - (a) (i) In n p scattering, S-wave scattering is predominant in the energy range below 10 MeV. Write the comments on this observation.

(ii)	Derive the relation between refractive
	index (u) and scattering length (a) of a
	material with nuclei per unit volume
	(N) due to neutron for wavelength (L).
	8

- (iii) How would the limitations of liquiddrop model be resolved in singleparticle shell model? 2+4+2=8
- (b) (i) In case of harmonic oscillator shell model, establish the relation between the harmonic oscillator frequency and the nuclear size.
 - (ii) Find the spin and parity of 15P³⁰ nucleus by using Nordheim's rule for shell model.
 - (iii) Calculate the slowing down time in graphite for neutrons having an initial energy of 2 MeV and final thermal energy 0.025 eV. Given, $\lambda_s = 2.6$ cm and $\xi = 0.155$. $3 \pm 2 \pm 3 = 8$

SECTION-II

(QUANTUM FIELD THEORY)

PHS-402.2

- Answer any two questions from the following: 2×2=4
 - (a) Show that if \(\psi\) satisfies the Dirac equation, it also satisfies the Klein-Gordon equation.
 - (b) For a complex scalar field theory, using the mode expansion for $\phi(x)$ write down $\langle 0 | \phi(x) \phi'(y) \rangle \langle 0 \rangle$ as an integral over three-momenta.
 - (c) The Lagrangian density for a massive vector field Aⁿ is given by

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_{\mu} A^{\mu}$$

Derive the equation of motion for the vector field A^{μ} and show that the equation of motion implies $\delta_{\alpha}A^{\mu}=0$.

(d) Define $j\frac{\mu}{5}(x)$ as the Noether current corresponding to the transformation $\psi(x) \to e^{i\alpha\gamma^5}\psi(x)$, (a is a constant) for a free Dirac theory with mass m. Compute $j\frac{\mu}{5}(x)$ and find the condition under which $\partial_{\mu}j\frac{\mu}{5}(x)=0$.

- **2.** Answer any **two** questions from the following : $4 \times 2 = 8$
 - write down the expression for $\Omega \mid T \mid \phi(x_1) \circ (x_2) \mid \Omega$ up to order λ^2 in terms of the Feynman propagator. Draw the corresponding Feynman diagrams.
 - (b) Given that the Dirac field transforms as $\psi \to \Lambda_{\frac{1}{2}} \psi$, where $\Lambda_{\frac{1}{2}} = \exp \left[-\frac{i}{2} S^{\mu\nu} \omega_{\mu\nu} \right]$. Evaluate the matrix $\Lambda_{\frac{1}{2}}$ for Lorentz-boost along the z-axis. [Given . $S^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$]
 - (c) For a real scalar free field theory, the Hamiltonian operator in terms of creation and annihilation operators is

$$H = \int \frac{d^3p}{(2\pi)^3} E_p \, a_p^* \, a_p$$

Using the mode expansion for $\varphi(x,0)$, show that $e^{iHt} \circ (x,0) e^{-iHt} = \circ (x,t)$.

(d) The integral representation of the Feynman propagator for a free real scalar field theory is given as

$$D_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{ie^{-ip\cdot(x-y)}}{p^2 - m^2 + i\epsilon}$$

Perform the p_0 integral and show that $D_F(x - y)$ can be written as $\langle 0 | T(\phi(x)\phi(y)) | 0 \rangle$.

- **3.** Answer *any* **one** question from the following: 8×1=8
 - (a) (i) The action for a complex scalar field φ coupled to the electromagnetic field A_{α} in 4 space time dimensions is given by,

$$S = \int d^4x \left[|D_{\mu}\phi|^2 - m^2 |\phi|^2 - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \right]$$

where the covariant derivative, $D_{\mu} = \partial_{\mu} + ieA_{\mu}$. Write down the dimension of the coupling constant e in the units of $\hbar = c = 1$. Use the Noether's prescription to find the energy momentum tensor $T^{\mu\nu}$ for the above theory. Is $T^{\mu\nu}$ symmetric? If not, symmetrize it.

(iii) A solution for the free Dirac equation is written as $u^{S}(p)e^{-ip\cdot x}$. Show that

$$\sum_{s} u_{ij}^{s}(p)u_{ij}^{s}(p) = (\not p + m)_{ij}$$

(ii) (ii) Consider the free Dirac theory $S = \int d^4x \; \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi$ Compute the conserved current j^{μ} corresponding to the global symmetry transformation $\psi(x) \rightarrow e^{i\alpha}\psi(x)$, (α is a constant). Next evaluate the normal ordered charge operator : Q; the free

and annihilation operators.

(ii) If $Pa_p P^{-1} = a_{-p}$, where P is the parity operator and a_p is the annihilation operator for a real scalar field. Show that

Dirac theory in terms of the creation

$$Po(t, x)P^{-1} = o(t, -x)$$
 2

