2023

M.Sc.

4th Semester Examination

ELECTRONICS

PAPER: ELC-403

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Answer **all** questions.

(CONTROL SYSTEM AND INSTRUMENTATION)

- 1. Answer any **four** questions from the following: 2×4=8
 - (a) Open-loop transfer function of a control system is given by $G(S) = \frac{5}{(S+3)}$ and

 $H(S) = \frac{3}{(S+5)}$. Determine the characteristic equation.

/425

- (b) Depending upon the ξ, mention the different damping systems.
- (c) Open-loop transfer function of a control system is given by $G(S) = \frac{k}{(1+ST_1)(1+ST_2)}$.

Draw the polar plot of the system. 2

- (d) Differentiate between Mason's gain formulas and block diagram reduction method.
- (e) Mention two applications of spectrum analyzer.
- (f) Define phase margin and gain margin of a control system.
- **2.** Answer *any* **four** questions from the following : $4\times4=16$
 - (a) Find e/R of the following SFG using Mason's gain formula:

(b) The block diagram of a unity feedback control system is shown below:

Determine the characteristic equation of the system t_p and M_p . 2+2=4

(c) The open-loop transfer function of a unity feedback system is given by

$$G(S) = \frac{50}{(1+0.1S)(S+10)}.$$
 Determine static error coefficients K_p and K_v . $2+2=4$

(d) Show that the transfer function Y(s)/X(s) has a zero in the right half s plane. Obtain Y(t) when X(t) is a unit step for the system shown below:

(e) Sketch the Bode plot of the system

$$G(S) = \frac{1}{\left(S+3\right)^3}$$

/425

- (f) Differentiate between active and passive transducers. What are the advantages of semiconductor strain guage? 2+2=4
- **3.** Answer *any* **two** questions from the following: 8×2=16
 - (a) The characteristic equation of a feedback control system is given below:

$$S^4 + 25S^3 + 15S^2 + 20S + K = 0$$

Determine the range of K for stability. Determine the value of K so that the system is marginally stable and find the frequency of sustained oscillations.

4+2+2=8

(b) For the system shown below, sketch the Nyquist plot for K=2 and use the Nyquist criteria to determine whether the closed loop system is stable for this gain. Find the range of K for the system to be stable. 6+2=8

- (c) Explain function generator using block diagram.
- (d) Sketch the root locus plot for the system having open-loop transfer function given by

$$G(S)H(S) = \frac{k}{S(S+4)(S^2+4S+13)}$$
8

[Internal Assessment: 10 Marks]

