M.Sc. 2nd Semester Examination, 2023

ELECTRONICS

(Signals and Systems)

PAPER - ELC-202

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Answer any four questions: 2×4
 - (a) What is a deterministic signal? Give an example. 1+1
 - (b) What do you mean by essential bandwidth of a signal?
 - of a signal?

 (c) What is aliasing effect?

 2

(<i>d</i>)	What do you mean by time-invariant system?	2
(e)	Establish the relation between the input signal energy spectral density and the output signal energy spectral density.	2
(f)	What is Fast Fourier Transform (FFT)?	2
Ans	swer any four questions: $4 \times$	4
(a)	What is zero padding? What are its uses? 2+	2
(b)	Test whether the following systems are causal or non-causal: 2+	2
	(i) y(n) = ax(n) + bx(n-1)	
	$(ii) \ y(n) = x(n^2)$	
(c)	Explain Overlap-Save method for filtering	

(d) Verify Parseval's theorem for the signal $g(t) = e^{-at} u(t)$ for a > 0.

of long duration sequences.

2.

- (e) Find the circular convolution of two finite duration sequences $x_1(n) = \{1, 1, -2, 3, -1\}$ and $x_2(n) = \{1, 2, 3\}$.
- (f) (i) What do you mean by auto-correlation and cross-correlation?
 - (ii) What is radix -2 FFT? 2+2
- 3. Answer any *two* questions: 8×2
 - (a) (i) How will you obtain linear convolution from circular convolution for two finite duration sequences?
 - (ii) Compute the circular convolution of $x_1(n)$ and $x_2(n)$ for N = 5 where $x_1(n) = \delta(n) + \delta(n-1) \delta(n-2) \delta(n-3)$ $x_2(n) = \delta(n) - \delta(n-2) + \delta(n-4)$
 - (b) Find the total response of the system described by difference equation y(n)-4y(n-1)+4y(n-2)=x(n)-x(n-1) when the input is $x(n(=(-1)^n u(n)))$ with the initial conditions y(-1)=y(-2)=1.

- (c) Derive the expression of the Fourier Integral to represent aperiodic signal.
- (d) (i) Explain the energy spectral density of a signal.
 - (ii) Estimate the essential bandwidth W rad/s of the signal $e^{-\alpha t}u(t)$, if the essential band is required to contain 90% of the signal energy. 4+4

[Internal Assessment - 10 Marks]