M.Sc. 2nd Semester Examination, 2023 ELECTRONICS

(Electromagnetism and Antenna)

PAPER - ELC-201

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

- 1. Answer any four questions: 2×4
 - (a) Why a wave guide behaves like a high pass filter?
 - (b) Define directivity and gain of an antenna. 1+1
 - (c) Why TEM mode can not propagate inside a Hollow wave guide?

	(a)	Draw the E & H plane radiation patterns	of	
		half wave dipole antenna.		2
	(e)	What are the boundary conditions of E & field in the interface between dielectric a		
		conductor?	1 +	1
	<i>(f)</i>	How a transmission line can be used step-up transformer?	as	2
•	Ans	swer any four questions:	4 ×	4
	(a)	Deduce relegraphen's equation for transmission line.	ıs-	4
	(b)	What are maximum useable frequency a skip distance with reference to ionospher propagation?		2
	(c)	How a transmission line is made distortiless line?	on	4
	(<i>d</i>)	What are loss-less & low-loss transmiss line? Find characteristic impedance a		

propagation constants for both cases. 2+2

- (e) A rectangular waveguide has the following parameters 2+2 a=1.5 cm, b=3.0 cm, $\mu=1$ and $\epsilon=1$.
 - (i) Find cut-off frequency for TE_{10} and TM_{11} mode.
 - (ii) Find guide wavelength and characteristic impedance z_0 of the line.
 - (f) Write down Maxwell's equation in Integral and Differential form. 2+2
- 3. Answer any two questions:

 8×2

- (a) A transmission line of characteristic impedance 100Ω is terminated with the load $z_L = 100 + j60$. With the help of Smith chart find
 - (i) Reflection co-efficient at load.
 - (ii) SWR on the line.
 - (iii) Maximum and minimum impedance on the line.

- (iv) Distance of maximum and minimum voltage from the load. 2+2+2+2
- (b) Deduce E & H field in far field region of a Hertzian dipole.8
- (c) (i) Why sky wave and ground waves are complementary to each other.
 - (ii) Deduce expression for 'Scant law'. 3 + 5
- (d) Find expressions for the real and imaginary parts of propagation constant for the propagation of wave in conducting medium. 4 + 4

[Internal Assessment - 10 Marks]