2023

M.Sc.

4th Semester Examination CHEMISTRY (SPECIAL)

PAPER: CEM-403

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

 ${\it Illustrate the answers\ wherever\ necessary.}$

Answer from any one Section.

SECTION—I (Physical Chemistry)

Answer from all the Groups as directed.

GROUP--A

Answer any **four** questions from the following: 2×4=8

1. Define polarizable interface and non-polarizable interface.

/266

(Turn Over)

membrane?

2.

3.

average molecular weight – Justify.
5. The rate of a reaction at 25 °C is doubled when the pressure is increased from 1 atm to 2000 atm. Calculate Δ²V, volume of activation, assuming it to be independent of pressure.

4. For macromolecules we always determine

What is the role of flippase protein in a cell

property?

/266

GROUP-B

6. Why is 'Number Average Molecular Weight' determined by osmometry method, a colligative

- Answer any **four** questions from the following:
- 7. The following reactions are essentially diffusion controlled:
 - (a) The combination of iodine atoms in water
 - (b) The combination of methyl radicals in toluene

(Continued)

If the viscosities of water and toluene at 20 °C are 1.002×10⁻² kg m⁻¹s⁻¹ and 5.90×10⁻⁴ kg m⁻¹s⁻¹ respectively, estimate the ratio of the rate constants of the two reactions at that temperature.

8. A solution of a protein was investigated in an ultracentrifugation velocity measurement at 20 °C, the rotor speed being 50000 r.p.m. The boundary receded as follows:

					V 800 00 00 00 00 00 00 00 00 00 00 00 00	MINERAL ADRESSES	
t(s)	0	300	600	900	1200	1500	1800
r(cm)	6.127	6.153	6.179	6.206	6.232	6.258	6.284

Calculate the sedimentation coefficient and molar mass of the protein. Further data are as follows:

$$\bar{v} = 0.728 \text{ cm}^3\text{g}^{-1}, \ \rho = 0.9981 \text{ g cm}^{-3},$$

$$D = 7.62 \times 10^{-11} \text{ m}^2\text{s}^{-1}$$

- 9. The rate of a full diffusion controlled reaction does not depend on the sizes of the reactants
 Justify the statement.
- 10. Write down the Standinger equation and explain how the viscosity average molecular weight (\overline{M}_v) is determined by using this equation. 1+3=4
- 11. Briefly describe the mechanism of action of green fluorescent protein.
- **12.** Briefly describe the strategies for the analysis of amino acid sequence in a peptide. 4

4

(4) GROUP—C

Answer *any* **two** questions from the following : $8 \times 2 = 16$

- 13. Define weight average molecular weight (\overline{M}_u) of a macromolecule and hence derive the expression for determining \overline{M}_{uv} by sedimentation equilibrium method. 1+7=8
- 14. Trace out the course of the reaction between hydrogen atom and hydrogen molecule using appropriate diagrams of Potential Energy Surfaces (PES).
- **15.** Using appropriate expressions for partition functions derive an expression for the rate constant of a reaction, based on the Transition State Theory (TST).
- 16. For a polarizable interface, prove that

$$d\gamma = -q_M dV - (q_M / Z_j F) d\mu_j - \Sigma \Gamma_i d\mu_i$$

where $d\gamma$ is the infinitesimal change in surface tension and the other terms bear useful significance.

(5) SECTION—II (Organic Chemistry)

Answer from all the Groups as directed.

GROUP-A

- 1. Answer any four questions from the following: 2×4=8
 - (a) How will you distinguish between cis-decalin and trans-decalin by ¹H-NMR spectroscopy?
 - (b) What are quasi-enantiomers? Give an example.
 - (c) What do you mean by A^{1,3}-strain? Give an example.
 - (d) Draw the structure of the most unstable stereoisomer of perhydrophenanthrene and comment on its stereochemical features.
 - (e) What do you mean by 'molar ellipticity'? Mention its unit.
 - (f) Why is very high level of diastereoselectivity found for Lewis Acid mediated reactions of enol silanes with aldehydes?

(6) GROUP—B

- **2.** Answer any **four** questions from the following : $4 \times 4 = 16$
 - (a) What are the symmetry elements present in cis decalin and cis-9-methyl decalin? Compare the stabilities of cis- and trans-9-methyl decalins. Draw the conformers of cis-1-thiadecalins and comment on their relative stability.
 - (b) Explain the dibenzoate chirality rule. What is meant by Davydov splitting? 2÷2=4
 - (c) Compare the stabilities of cis and trans $\Delta^{1,2}$ and $\Delta^{2,3}$ octalms.
 - (d) What is cotton effect? How will you study the conformational changes in (-)menthone with change in polarity of the solvents using CD curves with Cotton effect?
 - (e) What are plane ORD curves? How do plane curves help to prove that ortho, meta and para isomers of iodophenyl ethers of lactic acids have the same configuration?
 - (f) Explain the Felkin Anh model with a proper example. What is meant by Bürgi-Dunitz trajectory?

(7) GROUP--C

- **3.** Answer *any* **two** questions from the following : $8 \times 2 = 16$
 - (a) (i) Draw all the stereoisomers of cis-1decaione and cis-1-decalol and comment on their relative stabilities.

(ii) State and explain Lowe's rule.

(b) Deduce the Winstein - Holness and Eliel -Ro equations. Why has it become obsolete? Calculate the value of equilibrium constant (k) for the system.

Given, the specific rate constants $k_o = 0$, $k_a = 7.1 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ sec}^{-1}$ and the overall empirical rate constant $k = 2.4 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1} \text{ sec}^{-1}$ at $298 \cdot 15 \text{K}$.

5+1+2=8

5

3

(c) How many stereoisomers are possible for perhydroanthracenes? Write all the possible stereoisomers of perhydroanthracenes and discuss then stereochemical features.

2+6=8

(d) (i) Explain Cieplak model with a suitable example. What are the drawbacks of this model? ++2=6

(ii) How will you carry out the following conversion?

SECTION-III

(Inorganic Chemistry)

Answer from all the Groups as directed.

GROUP-A

- 1. Answer any four questions from the following:
 - (a) What are the requirements of acid catalyzed hydrolysis reaction?
 - (b) Write a short note on 'Edward nucleophilicity scale'.

/266

(Continued)

- (c) What are the required conditions for base catalyzed hydrolysis reaction?
- (d) State Marcus theory for outer sphere cross reaction.
- (e) Why is oxygen to be expelled from the polarographic cell before the experiment?
- . (f) What do you mean by residual current?

GROUP-B

- **2.** Answer *any* **four** questions from the following : $4 \times 4 = 16$
 - (a) $[M(bpy)_3]^2$ shows acid catalyzed aquation while $[M(phen)]^{3/2}$ complex does not. Explain with suitable mechanism. [M = Fe, Ni]
 - (b) Derive rate law for the dissociative mechanism for L₃MX complex where five coordinated intermediate have appreciable life time considering Y as an attacking ligand. If K₂[Y] is very large or very small, then what will be the effect on rate law.
 - (c) Give the mechanism of outer sphere electron transfer reaction with suitable example.

/266

(Turn Over)

- (d) What do you mean by acid catalyzed Pseudo substitution? Explain the mechanism with suitable examples.
- (e) What do you mean by half wave potential? Derive its expression.
- (f) What are the advantages and disadvantages of droping Mercury electrode?

GROUP-C

Answer any two questions from the following : $8 \times 2 - 16$

 (a) Rate constants for Replacement of the Chloro Ligand by Pyridine in Pt(PEt₃)₂ (R)Cl

R—Pt	K(M s ')		
	Trans (25 °C)	cis (0 °C)	
P1	1.2 × 10 4	8 × 10 ²	
CH _j	1·7 × 10 =	2 × 10 ⁱ	
PI_{3}C \leftarrow	3·4 × 10 ⁴⁰	1 × 10 ⁻⁶ (25 °C)	

Rationalize the rate of the observed reaction.

/266

(Continued)

(b) Rate of anation of $[Ti(H_2O)_6]^{3+}$ by Y^{n-} at 13 °C is given below:

		1 6 200 -	
$Y^{n-}(n = 0)$	$k(\mathrm{M}^{-1}\mathrm{s}^{-1})$	$Y^{n-}(n=1)$	$k(M^{-1}s^{-1})$
CICH ₂ CO ₂ H	6·7×10 ⁻²	NCS	8·0×10 ³
CH ₃ CO ₂ H	9·7×10 ²	CICH,CO2	2·1×10 ⁵
H ₂ O	8 6×10 ⁻³	CH ₃ CO ₂	1·8×10 ⁰

Comment on the variation of rate constant in the above reactions. Propose the suitable mechanism for the apption reaction.

4+4=8

4. (a) Effect of non-leaving ligand on acid hydrolysis rates of some Co(III) complexes are given below:

Complex	$k(s^{-1})$
cis-[Co(en)2(OH)Cli	0.012
trans- $[Co(en)_2(OH)C1]^*$	1·60 × 10 ³
cis-[Co(en) ₂ Cl ₂ :	2.4×10^{-4}
trans-(Co(en) رِدَاعِ اللهِ الله	3.5×10^{-5}
cis-[Co(en) ₂ (NII ₃)Cij ²⁺	5×10^{-3}
trans- $[Co(en)_2(NH_3)CI]^{2^n}$	3.4×10^{-3}
cis-[Co(en) ₂ (H.O)Cl] ²⁺	1.6×10^{-5}
trans- $[Co(en)_2(H_2O)Cl]^2$	2·5 × 10 ⁶
cis-[Co(en) ₂ (CN)Cl]"	6.2×10^{-7}
trans-[Co(en) .(CN)Cl]	8.2×10^{-5}
5	

Explain these observed trends of the reaction rates.

(b) The rate constant for anation by Y^n for $[Fe(H_2O)_6]^{3-}$ and $[Fe(H_2O)_5(OH)]^{2+}$ are given below at $25~^{\circ}C$

Yn	$[k({\rm M}^{-1}{\rm s}^{-1})]$ for $[{\rm Fe}({\rm H_2O})_6]^{3+}$	$k(M^{-1}s^{-1})$ for $Fe(H_2O)_5(OH)]^{2-1}$
SO ₄	$1.1 - 10^{5}$	2.3×10^3
, CI ⁻	5:5 × 10 ³	4.8
Br	2.6×10^{3}	1.6
NCS	5.1×10^3	90
CICH,COC) 4·1 × 10 ⁴	1.5 × 10.2

Explain the mechanism of these reactions on the basis of the above observation.

4+4=8

5. Differential theemogram for sulphur is given below:

Explain each peak of the thermogram with proper explanation. 8

6. The cyclic voltammogram for the agricultural insecticide parathion is given below in 0.5 M pH 5 sodium acetate buffer in 50% ethanol.

Using the observed cyclic voltammogram confirm the product produced at A, B and C position.

				t:
				82
8				
81				