M.Sc. 2nd Semester Examination, 2023 ## **CHEMISTRY** (Inorganic) PAPER - CEM-203 Full Marks: 40 Time: 2 hours The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable #### GROUP-A Answer any four of the following questions: 2×4 1. (a) Write down the product of the following reaction. Draw the geometry of the product. $$Mo(g) + C_4H_6(g) \xrightarrow{-196^{\circ}C}$$ (b) Complete the following reaction. Here alkyne donates how many electrons? $$[CpNi(CO)]_2 + RC \equiv CR \longrightarrow$$ (c) Establish the relation $$a_i = \frac{1}{h} \sum_{R} \chi_i(R) \chi(R)$$ (where the symbols have their usual meaning) - (d) What do you mean by character representation of a direct product? - (e) Classify the following compounds for closo, nido, arachno, and hypo: CpCoC₂B₁₀H₁₂, Cp₂Fe₂Me₄C₄B₈H₈, H₆C₆B₆Et₆, C₂B₈H₁₀-. - (f) Calculate the styx number of $[B_{10}H_{15}]^{1}$. ### GROUP-B Answer any four of the following questions: 4×4 - 2. Explain the possible orbital interactions for the bonding in Fischer's carbene complex. - 3. 'Highly explosive halogen substituted acetylenes can be stabilized by complex formation'— Justify the statement with a reaction. - 4. Is p_x to p_y an allowed electric dipole transition in a tetrahedral environment? Explain with the help of the group theoretical principle. | T_d | E | 8C ₃ | 3C ₂ | $6S_4$ | $6\sigma_d$ | M | | |-----------------|---|-----------------|-----------------|--------|-------------|-------------------|-------------------| | A_1^{\dagger} | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2 + z^2$ | | A_2 | 1 | 1 | 1 | -1 | -1 | | | | E | 2 | -1 | 2 | 0 | 0 | | $(2z^2-x^2-y^2,$ | | 1 | İ | | 99 | | | | x^2-y^2) | | T_{1} | 3 | 0 | -1 | 1 | -1 | (R_x, R_y, R_z) | | | T_2 | 3 | 0 | -1 | -1 | I | (x, y, z) | (xz, yz, xy) | 5. Complete the following character table: | $C_{_{2v}}$ | $E C_2 \sigma_{\nu}(xz)$ | $\sigma^{i}_{v}(yz)$ | |-------------|--------------------------|----------------------| | A_1 | | x^2, y^2, z^2 | | A_2 | | xy | | B_{l} | er
per | xz | | B_2 | | yz | | | | | - 6. With the help of styx numbers 1731 and 6060, derive the boron hydride formula and draw the probable structures of these. - 7. (a) What is boron neutron capture therapy? - (b) Give at least two examples of 1st and 2nd generation BNCT agents. 2+2 ## GROUP-C Answer any two of the following questions: 8×2 Explain the C - C bond lengths in the above complexes by the orbital diagram. (b) Complete the following reaction. Draw the product's structure and mention the oxidation state of the central metal atom. $$Fe(Cp)_2 \xrightarrow{\text{Li, C}_2H_4} \xrightarrow{\text{-50°C, TMEDA}}$$ (c) Synthesize $$(OC)_5 W = \bigcap_{R}^{OMe} \text{ from } W(CO)_6.$$ $$3 + 3 + 2$$ 9. (a) Verify that the wave functions of p_x and p_y orbitals, as a pair, provided the basis for an irreducible representation in the C_{3v} environment. | C_{3v} | E | $2C_3$ | 3σ, | | | |----------|---|--------|-----|--------------------|---------------------| | A_{I} | 1 | 1 | ì | z | $x^2 + y^2$, z^2 | | A_{j} | 1 | 1 | -1 | R_{\star} | AN 1,000. | | E | 2 | -1 | 0 | $(x, y)(R_x, R_y)$ | (x^2-y^2, xy) | | | | | | | (xz, yz) | - (b) Based on the group theoretical principle, discuss on "spectral transition probabilities" of an electric dipole transition. - 10. (a) Show that the representation of a direct product $\Gamma_{\chi\gamma}$, will contain the totally symmetric representation only if the irreducible Γ_{χ} = the irreducible Γ_{γ} . - (b) Decompose the following reducible representation into irreducible components | C_{3v} | E | $2C_3$ | $3\sigma_{\nu}$ | | |----------|---|--------|-----------------|---| | Г | 4 | 1 | 0 | - | (Use character table of C_{3v} point group given in **Q.9**) (c) Complete the following reactions: (i) $$B_5H_9 + C_2H_4 \xrightarrow{AlCl_3}$$ (ii) $$B_{10}H_{14} + LiMe \longrightarrow 4 + 2 + 2$$ - 11. (a) Outline the products of the polymerization reaction of the B₂H₆ molecule in a sealed glass tube. - (b) Give suitable techniques to separate them individually. 4 + 4