M.Sc. 2nd Semester Examination, 2023

CHEMISTRY

(Inorganic)

PAPER - CEM-203

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP-A

Answer any four of the following questions: 2×4

1. (a) Write down the product of the following reaction. Draw the geometry of the product.

$$Mo(g) + C_4H_6(g) \xrightarrow{-196^{\circ}C}$$

(b) Complete the following reaction. Here alkyne donates how many electrons?

$$[CpNi(CO)]_2 + RC \equiv CR \longrightarrow$$

(c) Establish the relation

$$a_i = \frac{1}{h} \sum_{R} \chi_i(R) \chi(R)$$

(where the symbols have their usual meaning)

- (d) What do you mean by character representation of a direct product?
- (e) Classify the following compounds for closo, nido, arachno, and hypo:

 CpCoC₂B₁₀H₁₂, Cp₂Fe₂Me₄C₄B₈H₈,

 H₆C₆B₆Et₆, C₂B₈H₁₀-.
- (f) Calculate the styx number of $[B_{10}H_{15}]^{1}$.

GROUP-B

Answer any four of the following questions: 4×4

- 2. Explain the possible orbital interactions for the bonding in Fischer's carbene complex.
- 3. 'Highly explosive halogen substituted acetylenes can be stabilized by complex formation'—
 Justify the statement with a reaction.
- 4. Is p_x to p_y an allowed electric dipole transition in a tetrahedral environment? Explain with the help of the group theoretical principle.

T_d	E	8C ₃	3C ₂	$6S_4$	$6\sigma_d$	M	
A_1^{\dagger}	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
E	2	-1	2	0	0		$(2z^2-x^2-y^2,$
1	İ		99				x^2-y^2)
T_{1}	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	I	(x, y, z)	(xz, yz, xy)

5. Complete the following character table:

$C_{_{2v}}$	$E C_2 \sigma_{\nu}(xz)$	$\sigma^{i}_{v}(yz)$
A_1		x^2, y^2, z^2
A_2		xy
B_{l}	er per	xz
B_2		yz

- 6. With the help of styx numbers 1731 and 6060, derive the boron hydride formula and draw the probable structures of these.
- 7. (a) What is boron neutron capture therapy?
 - (b) Give at least two examples of 1st and 2nd generation BNCT agents. 2+2

GROUP-C

Answer any two of the following questions: 8×2

Explain the C - C bond lengths in the above complexes by the orbital diagram.

(b) Complete the following reaction. Draw the product's structure and mention the oxidation state of the central metal atom.

$$Fe(Cp)_2 \xrightarrow{\text{Li, C}_2H_4} \xrightarrow{\text{-50°C, TMEDA}}$$

(c) Synthesize

$$(OC)_5 W = \bigcap_{R}^{OMe} \text{ from } W(CO)_6.$$

$$3 + 3 + 2$$

9. (a) Verify that the wave functions of p_x and p_y orbitals, as a pair, provided the basis for an irreducible representation in the C_{3v} environment.

C_{3v}	E	$2C_3$	3σ,		
A_{I}	1	1	ì	z	$x^2 + y^2$, z^2
A_{j}	1	1	-1	R_{\star}	AN 1,000.
E	2	-1	0	$(x, y)(R_x, R_y)$	(x^2-y^2, xy)
					(xz, yz)

- (b) Based on the group theoretical principle, discuss on "spectral transition probabilities"
 of an electric dipole transition.
- 10. (a) Show that the representation of a direct product $\Gamma_{\chi\gamma}$, will contain the totally symmetric representation only if the irreducible Γ_{χ} = the irreducible Γ_{γ} .
 - (b) Decompose the following reducible representation into irreducible components

C_{3v}	E	$2C_3$	$3\sigma_{\nu}$	
Г	4	1	0	-

(Use character table of C_{3v} point group given in **Q.9**)

(c) Complete the following reactions:

(i)
$$B_5H_9 + C_2H_4 \xrightarrow{AlCl_3}$$

(ii)
$$B_{10}H_{14} + LiMe \longrightarrow 4 + 2 + 2$$

- 11. (a) Outline the products of the polymerization reaction of the B₂H₆ molecule in a sealed glass tube.
 - (b) Give suitable techniques to separate them individually. 4 + 4