M.Sc. 2nd Semester Examination, 2023 CHEMISTRY

(Inorganic)

PAPER - CEM-203(Old)

Full Marks: 40

Time: 2 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

- 1. Answer any four of the following questions: 2×4
 - (a) Determine the characters of irreducible representation of D₄ point group.
 - (b) What do you mean by fluxional behaviour? Explain with a proper example.

- (c) Classify the following compounds with respect to closo, nido, arachno and hypo $[B_{12}H_{12}]^{2-}$, $[B_5H_{11}]$, B_6H_{10} , $C_4B_2H_6$.
- (d) Write down the steps involved for the determination of symmetry of vibrational modes of non-linear molecule using 3N Cartesian coordinate as base vector.
- (e) How will you synthesize Tebbe's reagent?
- (f) Draw the probable binding modes of allyl ligand.

GROUP - B

- 2. Answer any two of the following questions: 8×2
 - (a) Determine the characters of the irreducible representation of $C_{3\nu}$ point group. Write the appropriate representation of $C_{3\nu}$ point group. Write the appropriate Mulliken Symbols for these irreducible representations. Show that P_x and P_{ν} orbitals, as a pair, provide basis for the E representation of $C_{3\nu}$ point group. 2+2+4

- (b) (i) Calculate the styx number of [B₄H₈], [B₃H₈] and establish the most stable structure.
 - (ii) With the help of styx number 3100 draw the probable structure of boron hydride. 5+3
- (c) (i) Schematically present the possible orbital interaction in Fischer's and Schrock's complexes. Discuss on the magnetic behavior in each case.
 - (ii) What is the fundamental difference between the alkene and alkyne complexes while binding to the transition metal ion? Draw the possible binding modes of alkyne to transition metal ions.

 4 + 4
- (d) (i) Explain reversal of polarity during the reaction of transition metal bound alkene complexes.

(ii) Which of the following metal alkene complex do you think will look most like a metalla cyclopropane? Explain your answer.

(iii) Write down the product(s) of treatment of [Cr(CO)₆] with LiCH₃ followed by [(CH₃)₃O]BF₄. Propose the mechanism.

3+3+2

GROUP - C

- 3. Answer any four of the following questions: 4×4
 - (a) What is the fundamental difference between the alkene and alkyne complexes while binding to the transition metal ion? Draw the possible binding modes of alkyne to transition metal ions.
 - (b) Determine the characters of irreducible presentation of D₄ point group. Write the

appropriate Mulliken symbols for these irreducible representations.

(c) (i) Complete the following reactions

- (ii) 'NMR Spectroscopy is applied to detect/ monitor stereochemical non-rigidity'. Justify.
- (d) (i) Write a short note on 'spectral transition probabilities'.
 - (ii) Use group theoretical principle to obtain the IR and Raman activity of the vibrational modes of H₂O.

- (e) (i) Justify the 1, 2-migration mechanism in the 'ring wizzing' of η¹-Cp in [Fe(η⁵-Cp) (η¹-Cp)(CO)₂] with respect to NMR spectroscopy.
 - (ii) Which among the following alkenes will bind most strongly to a metal? Give reasons.
 - (I) Cyclooctadiene
 - (II) Ethylene
 - (III) Norborene
 - (IV)Cyclohexene
- (f) (i) Explain why the polarization effect is not observed in cubic or higher symmetry molecule.
 - (ii) Discuss the NMR of $[Fe_2(CO)_4(\eta^5-C_5H_5)_2$.