On the Exponential Diophantine Equation $23^{x}-19^{y}=z^{2}$

Chikkavarapu Gnanendra Rao

Department of Mathematics, Rajiv Gandhi University of Knowledge Technologies
IIIT Srikakulam, Campus-3, Andhra Pradesh, India
Email-id: gnanendramaths@rguktsklm.ac.in
Received 12 September 2022; accepted 15 December 2022

Abstract

This article attempts to solve the exponential Diophantine equation $23^{x}-19^{y}=z^{2}$ where x, y and z are non-negative integers using Catalan's conjecture, factorisation methods, modular arithmetic, and elementary mathematical concepts. This equation has exactly two solutions $(x, y, z)=(0,0,0),(1,1,2)$.

Keywords: Exponential Diophantine equation; Integer Solution; Catalan's Conjecture; Non-linear equation; modular arithmetic.

AMS Mathematics Subject Classification (2020): 11D61, 11D72

1. Introduction

Search for non-negative integer solutions of the Diophantine equations [4] is of greater interest to mathematicians all over the world for decades. Of them, the exponential Diophantine equations of the form $a^{x}+b^{y}=z^{2}$ are studied by so many mathematicians [5-12]. While solving these Diophantine equations, a well-known conjecture proposed in the year 1844 by Catalan [2] plays a key role. Later in the year 2004, it was proved by Mihailescu [3]. A new kind of Diophantine equation [9-12] of the form $a^{x}-b^{y}=z^{2}$ together with non-negative integer solutions are of special interest in this paper. Thongnak et al. $[9,11,12]$ solved it for $(a, b)=(2,3),(7,5),(15,13)$.The non-negative integer solution sets for these equations are $\{(0,0,0),(1,0,1),(2,1,1)\},\{(0,0,0)\}$ and $\{(0,0,0)\}$ respectively. Buosi et al. [10] investigated the exponential Diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$ a prime number for the integer solutions. In this paper, the exponential Diophantine equation $23^{x}-19^{y}=z^{2}$ is investigated for the nonnegative integer solutions. As there are no general methods, Catalan's lemma, factoring method, modular arithmetic, and some basic mathematical concepts [1] are used to solve it for non-negative integer solutions.

2. Primary results

Lemma 2.1. (Catalan's Conjecture [2] or Mihailescu's Theorem [3])
The quadruple $(a, x, b, y)=(3,2,2,3)$ is the only integer solution for the Diophantine equation $a^{x}-b^{y}=1$, where $\mathrm{a}, \mathrm{x}, \mathrm{b}, \mathrm{y}$ are integers with $\min \{a, x, b, y\}>1$.

Chikkavarapu Gnanendra Rao

Lemma 2.2. The exponential Diophantine equation $1-19^{y}=z^{2}$ has non-negative integer $\operatorname{solution}(y, z)=(0,0)$.
Proof: let y and z be non-negative integers.
Consider the exponential Diophantine equation $1-19^{y}=z^{2}$
Case-1: $y=0$. If $y=0$ then we get $z=0$ from (1) so that $(y, z)=(0,0)$ is a solution of (1)
Case-2: $y>0$. Then $z^{2}=1-19^{y}$ is a negative integer for $y>0$ which is a contradiction to the fact that z^{2} is a non-negative integer. Hence the only possible nonnegative integer solution is $z=0$ and $y=0$.

Lemma 2.3. The exponential Diophantine equation $23^{x}-1=z^{2}$ has only one nonnegative integer solution $(x, z)=(0,0)$.
Proof: let x and z be non-negative integers.
Consider the exponential Diophantine equation $23^{x}-1=z^{2}$
Case-1: $x=0$.
If $x=0$ then we get $z=0$ from (2) so that $(x, z)=(0,0)$ is a solution of (2)
Case-2: $x>0$. If $x=1$, then $z^{2}=22$ this has no integer solution.
For $z=1,23^{x}=2$ this is impossible.
Thus $x>1$ and $z>1$, so that $\min \{23, x, z, 2\}>1$.
Then by Lemma 2.1 the exponential Diophantine equation $23^{x}-z^{2}=1$ has no solutions. Therefore there is only one non-negative integer $\operatorname{solution}(x, z)=(0,0)$.

3. Main result

Theorem 3.1. Let x, y and z be non-negative integers.
The exponential Diophantine equation $23^{x}-19^{y}=z^{2}$ has two non-negative integer solutions $(x, y, z)=(0,0,0)$ and $(1,1,2)$.
Proof: let x, y and z be non-negative integers such that $23^{x}-19^{y}=z^{2}$.
Case-1: $x=0$ in (3), we get $1-19^{y}=z^{2}$.
Then by lemma 2.1 a solution $(y, z)=(0,0)$ is obtained. Thus $(x, y, z)=(0,0,0)$ is a solution of (3).
Case-2: $y=0$ in (3), we get $23^{x}-1=z^{2}$. Then by lemma 2.2 a solution $(x, z)=(0,0)$
is obtained. Thus we get a solution $(x, y, z)=(0,0,0)$.
Case-3: $x=1$ and $y=1$ in (3), it gives a solution $(x, y, z)=(1,1,2)$ of (3)
Case-4: $x>1$ and $y>1$
We have $23^{x} \equiv 3^{x} \equiv\left\{\begin{array}{l}1 \bmod 4, \text { if } x \text { is even } \\ 3 \bmod 4, \text { if } x \text { is odd }\end{array}\right.$ and $19^{y} \equiv 3^{y} \equiv\left\{\begin{array}{l}1 \bmod 4, \text { if } y \text { is even } \\ 3 \bmod 4, \text { if } y \text { is odd }\end{array}\right.$

Thus $z^{2} \equiv 23^{x}-19^{y} \equiv 3^{x}-3^{y} \equiv\left\{\begin{array}{l}0 \bmod 4 \text { if both } x \text { and } y \text { are even } \\ 0 \bmod 4 \text { if both } x \text { and } y \text { are odd } \\ -2 \bmod 4 \text { if } x \text { is even and } y \text { is odd } \\ 2 \bmod 4 \text { if } x \text { is odd and } y \text { is even }\end{array}\right.$
Neglect (6) and (7) as always $z^{2} \equiv 0 \bmod 4$ or $z^{2} \equiv 1 \bmod 4$.
Hence both x and y are even or both x and y are odd.

Subcase-1: suppose that both x and y are even non-negative integers.
Let $x=2 m$ and $y=2 n$. Here m, n are non-negative integers.
Then (3) becomes $23^{2 m}-19^{2 n}=z^{2}$
$19^{2 n}=23^{2 m}-z^{2}=\left(23^{m}-z\right)\left(23^{m}+z\right)$.
Let $\left(23^{m}-z\right)=19^{u}, u$ is a non-negative integer.
From (9) and (10), we get $\left(23^{m}+z\right)=19^{2 n-u}$.
Adding (10) and (11), we get $2\left(23^{m}\right)=19^{u}+19^{2 n-u}=19^{u}\left(1+19^{2 n-2 u}\right)$.
It follows that $19^{u}=1$ and $2\left(23^{m}\right)=\left(1+19^{2 n-2 u}\right)$.
From this we must have $u=0, m=0, n=0$ only. Thus again we get the zero solution.

Subcase-2: Suppose that x and y are odd non-negative integers.
Let $x=2 m+1$ and $y=2 n+1$, for some non-negative integers m, n.
Then from (3), $23^{2 m+1}-19^{2 n+1}=z^{2}$.
$19^{2 n+1}=23^{2 m+1}-z^{2}=23^{2 m}(16+7)-z^{2}$
From (13), $19^{2 n+1}-23^{2 m}(7)=23^{2 m}(16)-z^{2}=\left(23^{m}(4)-z\right)\left(23^{m}(4)+z\right)$ (14)
Let $\left(23^{m}(4)-z\right)=19^{u}, \mathrm{u}$ is a non-negative integer.
Then $\left(23^{m}(4)+z\right)=\left(19^{2 n+1}-23^{2 m}(7)\right) 19^{-u}$
Adding (15) and (16) we get $23^{m}(8)=19^{u}+\left(19^{2 n+1}-23^{2 m}(7)\right) 19^{-u}$
$23^{m}(8)=19^{u}\left[1+\left(19^{2 n+1}-23^{2 m}(7)\right) 19^{-2 u}\right]$
From this $19^{u}=1$ and $1+\left(19^{2 n+1}-23^{2 m}(7)\right) 19^{-2 u}=23^{m}(8)$
Hence $u=0$ only, so that $1+\left(19^{2 n+1}-23^{2 m}(7)\right)=23^{m}(8)$
As $\left[1+\left(19^{2 n+1}-23^{2 m}(7)\right)\right] \equiv 1 \bmod 4$ and $23^{m}(8) \equiv 0 \bmod 4$.
From (18) we get $1 \equiv 0 \bmod 4$ this is a contradiction.
Hence there is no solution in this case.
Therefore (3) has exactly two non-negative integer solutions $(x, y, z)=(0,0,0),(1,1,2)$ only.

4. Open problem

Search for the non-negative integer solutions of the Diophantine equations of the form $p^{x}-q^{y}=z^{2}$ where p and q are prime numbers with $p>q$.

Chikkavarapu Gnanendra Rao

5. Conclusion

In this paper it is proved that the exponential Diophantine equation $23^{x}-19^{y}=z^{2}$ has exactly two non-negative integer solutions $(x, y, z)=(0,0,0),(1,1,2)$.

Acknowledgements.

The author is grateful to the referees for their suggestions for the improvement of the paper.

REFERENCES

1. Dickson, Leonard Eugene, First course in the theory of equations, J. Wiley \& sons, Incorporated, 1922.
2. Catalan, Eugene,Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, (1844) 192-192.
3. Mihailescu, Preda. Primary cyclotomic units and a proof of Catalans conjecture, (2004) 167-195. https://doi.org/10.1515/crll.2004.048
4. Le, Maohua, Reese Scott, and Robert Styer. a survey on the ternary purely exponential diophantine equation $\mathrm{a}^{\mathrm{X}}+\mathrm{b}^{\mathrm{y}}=\mathrm{c}^{\mathrm{Z}}$, arXiv preprint, arXiv:1808.06557 (2018).
5. Acu, Dumitru, On a Diophantine equation, General Mathematics, 15(4) (2007) 145148.
6. Burshtein, Nechemia, On the Diophantine Equation $p^{x}+q^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 13(2) (2017) 229-233.
7. Suvarnamani, Alongkot, Solutions of the Diophantine equation $2^{x}+p^{y}=z^{2}$, Int. J. Math. Sci. Appl., 1(3) (2011) 1415-1419.
8. Asthana, Shivangi, and Madan Mohan Singh. On the Diophantine equation $8^{\mathrm{x}}+$ $113^{y}=z^{2}$, International Journal of Algebra,11(5) (2017) 225-230.
9. Thongnak, Sutthiwat, Wariam Chuayjan, and Theeradach Kaewong, On the exponential Diophantine equation $2^{x}-3^{y}=z^{2}$, Southeast Asian Journal of Sciences,7(1) (2019) 1-4.
10. Buosi, Marcelo, Anderson LP Porto, and Douglas FG Santiago. On the exponential diophantine equation $p^{x}-2^{y}=z^{2}$ with $p=k^{2}+2$, A Prime Number, Southeast Asian Journal of Sciences, 8(2) (2020) 103-109.
11. Thongnak, Sutthiwat, Wariam Chuayjan, and Theeradach Kaewong, The solution of the exponential Diophantine equation $7^{x}-5^{y}=z^{2}$, Mathematical Journal, 66(703) (2021) 62-67.
12. Thongnak, Sutthiwat, Wariam Chuayjan, and Theeradach Kaewong, On the Diophantine equation, $15^{x}-13^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 27(1) (2023) 23-26.
