2008

M.Sc.

1st Semester Examination

ZOOLOGY

PAPER-Z-102

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Ecology)

1. Answer any two of the following:

- 2×2
- (a) What is reciprocal predatory cycle?
- (b) What is General Diversity Index (\overline{H}) ?
- (c) What do you mean by keystone species?
- (d) What is life table?

2. Differentiate between (any two):

- 4×2
- (a) Connectedness food web and energy food web.
- (b) Organismic and Individualistic concept.
- (c) Ecotone and Edge.
- (d) Source population and sink population.
- 3. Answer any one of the following:
 - (a) Discuss Levin's model of metapopulation dynamics.

Deduce the equation $P=1-\frac{e}{m}$, where 'e' is the probability of extinction of a local population, 'm' is the probability of colonization and P is the equilibrium. 5+3

(b) What is competitive exclusion principle? State one experimental and one natural evidence. 2+6

Group-B

(Biostatistics)

- 1. Write briefly about any two of the following: 2×2
 - (a) Sampling errors.
 - (b) Continuous probability distributions.
 - (c) SE of estimate.
 - (d) Reasons for preferring anova to t test.

- **2.** Answer any two of the following questions: 4×2
 - (a) Discuss the properties of simple linear regression.
 - (b) Describe the assumptions of anova.
 - (c) Give an account of the properties of binomial probability distributions.
 - (d) Find whether or not there is a significant multiple linear correlation between Cardiac output (X_1) and the combination of venous return (X_2) and peripheral resistance (X_3) , using the following product-moment r values between the respective variables in a sample of 53 chimpanzees. ($\alpha = 0.05$)

 $r_{12} = + 0.75$; $r_{13} = + 0.75$; $r_{23} = - 0.20$.

Critical t scores : $t_{0.05(50)} = 2.009$;

 $t_{0.05(51)} = 2.008$; $t_{0.05(52)} = 2.007$.

- 3. Answer either (a) or (b) of the following questions:
 - (a) (i) What is one-way anova? What determines the number and sizes of groups in an experiment to be subjected to a one-way anova?
 - (ii) Work out one-way anova to find whether or not there is a significant difference between the mean tracheal ventilations (ml/min) of the following sample of locusts, respectively before and after their exposure to a pesticide. ($\alpha = 0.05$)

Animal No.	Tracheal	Ventilations
	Before (X ₁)	After (X ₂)
1 .	70	60
. 2	90	75
- 3	75	60
3 4 5		70
5	80 60	45
6	55	45
7	80	70 45 45 75
8	75	55
9	70	55 65
10	65	50

Critical F scores: $F_{0.05(1.19)} = 4.38$;

$$F_{0.05(1.18)} = 4.41$$
; $F_{0.05(2.18)} = 3.55$

Qτ

- (b) (i) Describe the assumptions of product-moment r.
 - (ii) Find whether or not there is a significant product-moment r between gill weights (X mg) and body-weights (Y gram) of the following sample of fishes, using the critical t scores quoted below. ($\alpha = 0.05$)

Animal No.	Gill weights (X)	Body weights (Y)
1	75	4.0
2 3	80 100	5.5 5.0
4	75	4.5
5	60 80	4.0 4.5
6 7	60	4.0
8	70	4.5
9 10	100	6.0 4.0
10	10	1.0

Critical t scores : $t_{0.05(9)} = 2.262$;

$$t_{0.05(8)} = 2.306$$
; $t_{0.05(18)} = 2.101$.

3+5