2009

ZOOLOGY

PAPER—Z-401

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP -- A

(Animal Physiology)

- 1. Answer any two questions out of four:
- 2×2
- (a) What is the role of Vitamin A in visual cycle?
- (b) How is neurotransmitter release in a synapse initiated?

(c)	Why	receptor	blocker	cannot	be	withdrawn
,	abruj	otly?				

- (d) State the importance of vascular connection between hypothalamus and pituitary.
- 2. Answer any *two* questions out of four: 4×2
 - (a) Describe the two basic means of regulation of heart pumping in details.
 - (b) Explain the different functional states of voltage-gated Na-channels. Why isNa-channel impermeable to other ions? 2+2
 - (c) List the important metabolic processes involving calcium. What is Hyperkalemia? 3+1
 - (d) How hormones modulate the activity of adenylate cyclase.

	of two:	uestion out	опе с	Answer	3.
--	---------	-------------	-------	--------	----

 8×1

2

 2×4

- (a) (i) Graphically compare the ionic basis of the action potential curve in a typical nerve fibre with that of a cardiac muscle cell. 3+3
 - (ii) Why conduction of action potential is always in a forward direction?
- (b) Write short notes on any four:
 - (i) Pacemaker potential
 - (ii) Neurotransmitter-definition and categories
 - (iii) Homeostatic regulation of blood glucose concentration
 - (iv) Conducting systems of heart
 - (v) Coenzyme function of Niacin and Riboflavin
 - (vi) EC₅₀

PG/IVS/ZOOL/Z-401/09

(Turn Over)

(vii) Hormones secreted from Adenohypophysis

(viii) Effect of venous return on cardiac output.

GROUP-B

(Adaptation & Evolution)

4. Answer any two questions:

- 2×2
- (a) What is a molecular clock and what is its role?
- (b) State the deleterious effects of ROS.
- (c) In the term genetic drift, what is drifting? Why is this an appropriate term to describe this phenomenon?
- (d) Mention the advantages and disadvantages of Panting.

5. Answer any two of the following:

 4×2

- (a) With regard to *genetic drift*, are the following statements true or false? If a statement is false, explain why.
 - (i) over the long run genetic drift will lead to allele fixation or loss.
 - (ii) when a new mutation occur within a population, genetic drift is more likely to cause the loss of the new allele rather than the fixation of the new allele.
 - (iii) genetic drift promotes genetic diversity in large populations.
 - (iv) genetic drift is more significant in small populations.
- (b) Illustrate the role of carotid rate in brain cooling.

- (c) What are the consequences of *tinkering* in evolutionary process?
- (d) Discuss the mechanism of increasing the number of genes in course of evolution.
- 6. Answer any one of the following:

 8×1

(a) (i) A recessive allele for red hair (r) has a frequency of 0.2 in population I and a frequency of .01 in population II. A famine in population I causes a number of people in population I to migrate to population II, where they reproduce randomely. It is estimated that 15% of the population II consists of people who migrated from population I. What will be the frequency of red hair in population II after migration?

- (ii) Cystic fibrosis is a recessive autosomal trait. In certain Caucasian populations, the number of people born with this disorder is about 1 in 2500. Assuming a Hardy -Weinberg equilibrium for this trait, what are the frequencies of the normal and CF allele? What are the genotypic frequencies of heterozygous individuals?
- (b) (i) What do you mean by Founder effect and mention its roles in speciation?
 - (ii) Distinguish between paralog and ortholog. Explain it citing examples of α -and β -globin gene in human and horse evolution.
 - (iii) How diving mammals avoid nitrogen necrosis? 2+4+2