2022

M.Sc.

4th Semester Examination

PHYSICS

PAPER—PHS-402

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

PHS-402.1 NUCLEAR PHYSICS II

[Marks : 20]

Group-A

Answer any two questions.

2×2

- 1. Deduce 1/v law in nuclear reaction
- 2. Show that the light nuclei are more effective moderators than the heavy nuclei.

(Turn Over)

- 3. Discuss the ground state of deuteron wave function (ψ_0) with the mixture of 3S_1 and 3D_1 states wave functions.
- **4.** Arrange the following decays in order of their increasing life times with proper explanation:

$$\pi^- + p \to \Lambda^0 + K^0$$
 ;
$$\pi^0 \to \gamma + \gamma \ ; \quad \mu^- \to e^- + \overline{\nu}_e + \nu_\mu \ .$$

Group-B

Answer any two questions.

2×4

- 5. (a) Show that the scattering angles of neutron in the L-system and C-system are almost same if the collision is against a very heavy nucleus (A >> 1).
 - (b) Give the range of life-time and nucleon traversetime on the formation and disintegration of the compound nucleus. 2+2
- 6. A 7.70 MeV alpha-particle interact with a target nucleus ¹⁴/₇N to produce a residual nucleus ¹⁷/₈O and a product particle ¹/₁H. The protons emitted at 90°

to the incident beam direction are found to have kinetic energy 4.44 MeV. Calculate the Q-value of the reaction and the atomic mass of the residual nucleus. Given the atomic masses:

$$M\binom{4}{2}He = 4.0026033u$$
 and $M\binom{14}{7}N = 14.0030742u$.

- 7. (a) The neutrons that generated in ⁹Be(a, n)¹²C nuclear reaction are not mono-energetic. Why?
 - (b) What do you understand by the level width (Γ) and level separation (D) between the levels of a continuum in nuclear reactions?
 2+2
- 8. Show how far the liquid-drop model is successful in explaining why ²³⁵U nuclide is fissile to slow neutrons but ²³⁸U nuclide is not.

Group-C

Answer any one question.

 1×8

- 9. (a) Show that the maximum loss of energy in a single collision between the neutron and moderator nucleus is proportional to the initial energy of the neutron.
 - (b) Why the (d, p) reactions are more favourable than the (d, n) reactions at lower energy?

- (c) The compound nucleus can become de-excited either through γ -emission or by fission into larger nuclear fragments. The mean life time of the compound nucleus was found to be 4.7×10^{-15} sec and the partial width for γ -emission $\Gamma \gamma = 3.4 \times 10^{-2}$ eV. Find the partial fission width $\Gamma \gamma$.
- (d) Why is the angular distribution of light product particles isotropic in C.M. system for the compound nucleus reaction whereas there is always a forward peaking for direct reactions?

 2+3+2+3
- (a) Deduce the Breit-Weigner resonance formula for nuclear reaction.
 - (b) What angular momentum and parity are predicted by the shell model for the ground state of ¹⁷₈O nucleus?
 - (c) Assuming that the interaction potential in deuteron to be of rectangular well type with depth V_0 and range r_0 , show that the radius of the deuteron is given by $r_d = 2r_0V_0^{\frac{1}{2}}/(\pi E_B^{\frac{1}{2}})$, where E_B is the binding energy of deuteron. 5+2+3

PHS-402.2 QUANTUM FIELD THEORY

[Marks : 20]

4. Answer any two questions :

 2×2

- (a) Show that the scalar particles obey Bose statistics and the Dirac particles obey Fermi-Dirac statistics.
- (b) Chiral transformation is defined by $\psi \to e^{i\alpha\gamma^5}\psi$ where ψ is the Dirac field. Find the transformation of $\overline{\psi}\gamma^{\mu}\psi$ under this transformation. You may assume $\{\gamma^5, \gamma^{\mu}\} = 0$.
- (c) For a real scalar field theory show that the commutator $[\phi(x), \phi(y)]$ vanishes for spacelike separation i.e. for $(x y)^2 < 0$.
- (d) Given that for a real scalar field theory $|H,a_k^{\dagger}| = E_k a_k^{\dagger}$. Show that the n-particle state, $|k_1k_2...k_n\rangle$ is an eigenstate of the Hamiltonian. What is the eigenvalue?

5. Answer any two questions :

2×4

(a) Given that the Dirac field transforms as $\psi \to \Lambda_{\frac{1}{2}} \psi \text{ , where } \Lambda_{\frac{1}{2}} = \exp \left[-\frac{1}{2} S^{\rho\sigma} \omega_{\rho\sigma} \right] \text{. Evaluate}$

the transformation matrix $\Lambda_{\frac{1}{2}}$ for rotations about the z-axis. Hence show that the Dirac field changes sign upon rotation by an angle, 2π .

(b) The normal ordered conserved charge corresponding to the global transformation $\phi(x) \rightarrow e^{i\alpha}\phi(x)$ for the free complex scalar theory is given by

$$Q = \int \frac{d^3p}{(2\pi)^3} \left[a_p^{\dagger} a_p - b_p^{\dagger} b_p \right].$$

Compute $[\phi(x), Q]$ and show that $e^{-i\alpha Q}\phi(x)e^{i\alpha Q} = e^{i\alpha}\phi(x)$, where α is a constant.

(c) The action for a Dirac field ψ coupled to the electromagnetic field A_{μ} is given by,

$$\begin{split} S = \int \!\! d^4 x \bigg[\overline{\psi} \Big(\! i \gamma^\mu D_\mu - m \Big) \! \psi - \! \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \bigg] \;\; ; \\ D_\mu = \partial_\mu + i A_\mu \; . \end{split}$$

(i) Show that the action is invariant under the transformations:

$$\psi \to e^{i\alpha(x)}\psi$$
, $A_{\mu} \to A_{\mu} - \partial_{\mu}\alpha(x)$.

- (ii) Derive the equations of motion for the Dirac field and the electromagnetic field.
- (d) Use Wick's theorem to evaluate the correlation function:

$$\frac{\lambda}{4} \int \!\! d^4x \langle 0 | T \! \left\langle \! \phi(x_1) \! \phi^{\star}(x_2) \! \phi(x_3) \! \phi^{\star}(x_4) \! \phi(x) \!\! \right\rangle \!\! \left| 0 \right\rangle$$

where ϕ is a complex scalar field and $|0\rangle$ is the non-interacting vacuum state. Leave your answer in terms of the scalar Feynman propagator, $D_F(x-y)$. Draw the corresponding Feynman diagrams.

6. Answer any one question :

1×8

(a) Consider the free Dirac theory

$$S = \int\!\! d^4x \; \overline{\psi} \! \Big(\! i \gamma^\mu \partial_\mu - m \Big) \psi \; . \label{eq:S}$$

- (i) Compute the Hamiltonian density and evaluate the normal ordered Hamiltonian, H for the free Dirac theory in terms of the creation and annihilation operators.
- (ii) Show that $[H, a_p^{\dagger s}] = E_p a_p^{\dagger s}$.

(b) Consider the theory of self-interacting scalars in 3+1 space time dimensions given by the following:

$$L = \frac{1}{2} \Big(\partial_\mu \phi \Big)^2 - \frac{1}{2} \, m^2 \phi^2 - \frac{\lambda}{4!} \, \phi^4 \ . \label{eq:L}$$

- (i) In units of find the dimension of the coupling constant λ .
- (ii) Write down the position-space Feynman rules for computing correlation functions in this theory.
- (iii) Giving symmetry arguments explain which correlation functions vanish to all orders in perturbation theory.
- (iv) Compute the two point function $|\Omega\rangle \, T\{\phi(x)\phi(y)\}|\Omega\rangle \, \text{ upto order } \lambda^2. \text{ is the ground}$ state in the interacting theory. Draw the corresponding Feynman diagrams. Leave your answer in terms of the Feynman propagator $D_F(x-y)$.