2022

M.Sc.

2nd Semester Examination

PHYSICS

PAPER—PHS-203

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

PHS-203.1 ANALOG ELECTRONICS - II

[Marks : 20]

1. Answer any two questions:

 2×2

(a) Find the characteristic impedance of a π network with $Z_A = 4$ ohms $Z_B = 8$ ohms and $Z_C = 4$ ohms.

(Turn Over)

- (b) Draw the IV characteristics of an SCR indicating its different characteristic voltages and currents.
- (c) Define reflection coefficient and voltage standing wave ratio in a transmission line.
- (d) Draw the circuit diagram of an AC light dimmer using triac and diac.

2. Answer any two questions:

 2×4

- (a) Name the different types of distortions which arise in a practical transmission line and explain their origin. How these can be removed in a practical transmission line?
- (b) What type of material is used for the fabrication of a thermistor and why? Which device is more sensitive as a light sensor – a photo diode or a photo transistor? Explain.
- (c) State and explain the two corollaries of Foster's reactance theorem.

(d) Design a shunt type Foster network to give a driving point impedance of +j 200 ohms at ω = 1 mega radians per second. There is to be a zero at ω = 3 mega radians per second and poles at ω = 2 and 4 mega radius per second.

3. Answer any one question :

1×8

- (a) (i) Draw the circuit diagram of a constant-k Band pass filter and derive the expression for its cut off frequencies. Derive the expression for attenuation constant and phase constant in the pass band and attention bands.
 - (ii) Why Germanium cannot be used to fabricate an SCR? 7+1
- (b) (i) Draw the equivalent circuit of a practical transmission line and hence define the primary line constants.
 - (ii) Derive Telegraphers' equations and solve it to derive the general expression for voltage and current at any point along the length of the transmission line.

PHS-203.2 DIGITAL ELECTRONICS - II

[Marks : 20]

1. Answer any two questions:

2x2

- (a) Differentiate SAM and RAM with example.
- (b) What is mnemonics? Give example of double byte mnemonics.
- (c) Find 15's and 16's compliment of C2.
- (d) In a 4-bit DAC the full swing is 0V to 30V. What will be the output voltage for input 1101? What is the resolution of the DAC?
- 2. Answer any two questions:

 2×4

- (a) (i) In a memory IC the first location and the last location is given by 000(H) and FF0(H). How many locations are there in the memory cell?
 - (ii) What do you mean by DRAM?

2+2

C/22/MSc/2nd Sem/PHS-203

(Continued)

- (b) (i) What are the functions that can be executed by A.L.U?
 - (ii) What do you mean by carry look ahead adder? 2+2
- (c) (i) Draw a circuit which can add or subtract 4-bit binary numbers.
 - (ii) Give the digital circuit of 2-bit multiplier.
- (d) (i) Mention the name and importance of different FLAG registers in 8085 microprocessor.
 - (ii) What are the meaning of ORA C & INX D?
- 3. Answer any one question: 1×8
 - (a) (i) What is EPROM? Draw the circuit to expand 16×4 memory IC to 64×8 memory cell.

- (ii) Explain the quantization process of pulse code modulation.

 4+4
- (b) (i) Explain the conversion process from analog voltage to binary bits with proper schematic diagram.
 - (ii) Explain the process of BCD to 7-segment display system.