2022

M.Sc.

2nd Semester Examination

PHYSICS

PAPER-PHS-201

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

PHS-201.1 QUANTUM MECHANICS-II

[Marks : 20]

1. Answer any two questions:

 2×2

(a) Using time reversal invariance, prove that the energy eigenstates of a one dimensional harmonic oscillator are real.

(b) Show that the state $|\theta\rangle$ defined as

$$\left|\theta\right\rangle = \sum_{n=-\infty}^{\infty} e^{in\theta} \left|n\right\rangle$$

is an eigenstate of the lattice translation operator. Find the corresponding eigenvalue.

- (c) Suppose that \vec{U} and \vec{V} are two vector operators. Evaluate the commutation relation of $\vec{U} \cdot \vec{V}$ with all the components of the angular momentum operator \vec{J} .
- (d) Why JWKB approximation is not valid near the turning points?
- 2. Answer any two questions:

 2×4

(a) Consider a system whose Hamiltonian is given by

$$\hat{H} = E_0 \begin{pmatrix} -5 & 3\lambda & 0 & 0 \\ 3\lambda & 5 & 0 & 0 \\ 0 & 0 & 8 & -\lambda \\ 0 & 0 & -\lambda & -8 \end{pmatrix},$$

where $\lambda \ll 1$. Using first- and second-order nondegenerate perturbation theory, find the approximate eigen-energies of \hat{H} .

- (b) A system consisting of two nonidentical spin $\frac{1}{2}$ particles is known to be in the spin-singlet state. Suppose the measurement of one of the particles gives $s_z = \frac{h}{2}$. What are outcomes and the corresponding probabilities if (i) s_z for the other particle is measured?
- (c) Estimate the ground-state energy of a onedimensional simple harmonic oscillator using the trial wavefunction $\psi(x) = \sqrt{\alpha}e^{-\alpha x}$.

Use:
$$\int_0^\infty x^n e^{-ax} = n!/a^{n+1}$$

(d) Consider a spin-one particle with the Hamiltonian $H = aS_z + bS_x^2$ where a and b are constants. Compute the energy eigenvalues of the particle in terms of a and b.

3. Answer any one question :

 1×8

(a) (i) A 2D harmonic oscillator of mass m having hamiltonian H₀ is subjected to the following

perturbation: $V(x) = \frac{1}{2} \in m\omega^2 xy$. Considering \in to be a small parameter (\in << 1), compute the correction(s) to the energy of the two-fold degenerate first excited state of H_0 using perturbation theory.

(ii) The wave function of a particle subjected to a spherically symmetrical potential V(r) is given by $\psi = N(x + y + 2z)e^{-ar}$ where N is the normalization constant. If L_z is measured, write down the possible outcomes and the corresponding probabilities. Find the expectation value of L_z . Use the following expressions for the spherical harmonics: Y_r^m .

$$\begin{split} Y_0^0 &= \sqrt{\frac{1}{4\pi}} & Y_1^{\pm 1} &= \mp \sqrt{\frac{3}{8\pi}} \sin\theta e^{\pm i\phi} \\ Y_1^0 &= \sqrt{\frac{3}{4\pi}} \cos\theta & Y_2^{\pm 1} &= \mp \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta e^{\pm i\phi} \end{split}$$

(b) A particle of spin $\frac{1}{2}$ is in a d state of orbital angular momentum (i.e., l = 2). Work out the coupling of the spin and orbital angular momenta of this particle and find all the states and the corresponding Clebsch-Gordan coefficients.

PHS-201.2

METHODS OF MATHEMATICAL PHYSICS - II

[Marks : 20]

4. Answer any two questions:

 2×2

- (a) f(t) = 1 for $t \le 0$ = 0 for t > 0Find the F.T. of f(t).
- (b) Solve the equation

$$\frac{\partial^2 y}{\partial t^2} - a^2 \frac{\partial^2 y}{\partial x^2} = E \sin pt.$$

- (c) Show that the transformation x' = ax + b, a ≠ 0 form a lie group. Find the generators.
- (d) Prove that $3 \otimes 3 = 6 \oplus 3$.

5. Answer any two questions:

 2×4

(a) Using Parseval's identify,

prove that
$$\int_0^\infty \frac{x^2}{(x^2+1)^2} dx = \frac{\pi}{4}.$$

(b) f(t) = 0 for |t| > 10= $\cos t$ for $-10 \le t \le 10$.

Prove that

$$F(jw) = \frac{\sin(10(w-1))}{w-1} + \frac{\sin(10(w+1))}{w+1}.$$

(c) Show that permutation of 3 distinct (S₃ group) is isomorphic with D₃.

(d) Solve:
$$y(x) = x + 2 \int_{0}^{x} \cos(x - t)y(t)dt$$
.

6. Answer any one question:

1×8

(a) Transform the differential equation

$$y'' + y = x$$
; $y(0) = 0, y'(1) = 0$

to a Fredholm integral equation, finding the corresponding Green's function.

(b) Character table E 6C₁ 3C₂ 6S₄ 0_h $8C_3$ $8S_6$ $3\sigma_h$ i $6\sigma_\alpha$ $6C_2$ T_{1g} 1 0 0 $T_{2g} \\$ 0 0 -11 E_{g} -1 2 0 T_{Ag_1} 1 1 1 1 1 1 $T_{2g} \otimes T_{2g}$ 9 1 1 1 0 0 1 9 1 1

Prove that

$$T_{2g} \otimes T_{2g} = A_{1g} \oplus E_g \oplus T_{1g} \oplus T_{2g}$$

2022

M.Sc.

2nd Semester Examination PHYSICS

PAPER—PHS-202

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

PHS-202.1 SOLID STATE - II

[Marks : 20]

1. Answer any two questions:

2x2

- (a) What is the difference between a superconductor and a perfect conductor?
- (b) Draw the variation of \vec{M} and \vec{B} with applied magnetic field for a superconductor.

(Turn Over)