2022

M.Sc.

2nd Semester Examination

CHEMISTRY

PAPER—CEM-203

INORGANIC CHEMISTRY-II

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any four questions.

 4×2

1. (a) Explain why polarization effect is not observed in cubic or higher symmetry molecule.

- (b) The representation of a direct product, Γ_{AB} , will contain the totally symmetric representation only if the irreducible Γ_A = the irreducible Γ_B (where Γ_{AB} = $\Gamma_A \times \Gamma_B$). Explain.
- (c) Complete the following reaction:

 [Cp Ni (CO)]₂ + RC ≡ CR →

Explain the observed C - C bond length in the above complexes. Show the related orbital diagram.

- (e) Give at least two examples of each for 1st and 2nd and 3rd generation BNCT agents.
- (f) Complete the following reactions:

$$4\times\frac{1}{2}$$

(i)
$$B_4H_{10} + C_2H_2 \longrightarrow$$

(ii)
$$2B_4H_{10} + 2Na(Hg) + Et_2O \longrightarrow$$

(iv)
$$B_5H_9 + CH_3OH \longrightarrow$$

Group-B

Answer any one question.

1×8

2. Justify that in $[Mo_2Cl_8]^4$ the δ to δ^* transition is electric-dipole allowed with z-polarization and forbidden for radiation with its electric vector in the xy plane.

E	2C ₄	C_2	00 (
		\sim_2	2C2'	2C2"	ì	2S ₄	σ_{h}	$2\sigma_{\rm v}$	$2\sigma_{\rm d}$		2
1	1	1	1	1	1	1	1	1	1	**	$x^2 + y^2, z^2$
1	1	1	-1	-1	1	1	1	-1	-l	R_z	64
1	-1	1	1	-l	1	-1	1	1	-1		$x^2 - y^2$
1	-1	1	-1	1	1	-1	1	:- 1	1		хy
2 ,	O	-2	O	0	2	0	-2	O	0	(R_x, R_y)	(xz, yz)
1	1	1	1	1	-1	-1	-1	-1	-1		
1	1	1	-1	-1	-1	-1	-1	1	1	z	
1 :	-1	1	1	-1	-1	1	-1	-1	1	**	
1	-1	1	-1	1	-1	1	-1	1	-1	78	
2	0	-2	0	0	-2	0	2	0	0	(x, y)	
	2 ; 1 1 1 ;	1	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 -1 1 -1 1 1 -1 2 0 -2 0 0 2 0 1 1 1 1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 <td< td=""><td>1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1 -1</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<>	1 1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1 -1 1 -1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3. (a) Is p_x to p_y an allowed transition in a tetrahedral environment? Explain.

E	8C ₃	3C ₂	6S ₄	$6\sigma_{ m d}$		8
1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
1	1	1	-1	-l		
12	-1	2.	0	0		$(2z^2-x^2-y^2, x^2-y^2)$
						$\mathbf{x}^2 - \mathbf{y}^2$
3	0	-1	1	1	(R_x, R_y, R_z)	n n
3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
0					(R_x, R_y)	
	1 1 2	1 1 1 1 2 -1	1 1 1 1 1 1 2 -1 2 3 0 -1	1 1 1 1 1 1 1 1 2 -1 2 0 3 0 -1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Using group theoretical principle verify that $n \longrightarrow \pi^*$ electronic transition is forbidden whereas $\pi \longrightarrow \pi^*$ electronic transition is allowed in formal-dehyde molecule.

C ₂ v	E	C ₂	$\sigma_{\rm v}({\bf x}z)$	$\sigma_{v}'(yz)$		
Aı	1	1	1	1	Z	x^2, y^2, z^2
A ₂	l	1	-1	-1	R_z	ху
В	1	-1	1	-1	x, R _y	ХZ
В2	l	-1	-1	1	y, R _x	yz

3+5

Group-C

Answer any one question.

1×8

4. (a)
$$NiCl_2 +$$
 $+ AIR_3$ C_8H_{12} [B]
$$[A] \qquad [C_2H_4]$$

Write down the structures of [A], [B] and [C] mentioning their geometries. Calculate the number of valence electrons in each complex.

(b) Complete the following reaction:

$$Cp_2Ti(CO)_2 + PhC \equiv CPh \xrightarrow{\text{heptane } 25^{\circ}C}$$
vacuum
$$(2+2+2)+2$$

- 5. (a) "Halogen substituted acetylenes are highly explosive compounds in the uncomplexed state, however, it can be stabilized by complex formation"—justify the statement with a suitable example.
 - (b) Schematically present the bonding in Fischer's carbyne complex through the orbital diagram.

(c)
$$\bigcirc$$
 - $Cr(CO)_5$ + \bigcirc - \bigcirc + \bigcirc $Cr(CO)_5$

Discuss the reason behind the displacement of ciscyclooctene by its trans-analogue.

(d) Write down the possible binding modes of alkyne ligand as 4 electron donors to metal atoms.

2+2+2+2

Group-D

Answer any two questions.

2x4

6. Categorize the following compounds as closo, nido, arachno and hypo boron hydrides:

Epco C₂B₁₀H₁₂); [Me₄(C₂B₇H₉]; [B₉H₁₄]⁻; [C₂B₅H₇]

C/22/MSc/2nd Sem/CEM-203

(Turn Over)

- 7. Calculate the styx number of $[B_8H_{12}]^{2-}$. Established and draw the most probable structure of this anion.
- For two boron hydrides the styx numbers are 3530 and 4320. Establish the probable structures of these boron hydrides.

Group-E

Answer any two questions.

2×4

9. Establish the equation

$$a_i = \frac{1}{h} \sum_{R} X_{AB}(R) X_i(R)$$

Where the terms have usual significance.

10. Complete the following reaction mentioning the structure, geometry and the valence electron count of the final product:

$$Mo(g) + 3C_4H_6 \longrightarrow$$

- 11. (a) Calculate the styx number of $[B_6H_{12}]$.
 - (b) Write the formation of possible product(s) when B₄H₁₀ reacts with Me₂Hg. 2+2