List of Figures

Fig.2.1: Geometry of the problem

- Fig.2.2: Variation of velocity for different N when $M^2 = 5$, $r_T = 0.4$ and Gr = 100
- Fig.2.3: Variation of velocity for different M^2 when N = 4, $r_T = 0.4$ and Gr = 100
- Fig.2.4: Variation of velocity for different Gr when $M^2 = 5$, N = 4 and $r_T = 0.4$
- Fig.2.5: Variation of velocity for different r_T when $M^2 = 5$, N = 4 and Gr = 100
- Fig.2.6: Variation of induced magnetic field for different N when $M^2 = 5$, $r_T = 0.4$ and Gr = 100
- Fig.2.7: Variation of induced magnetic field for different M^2 when N = 4, $r_T = 0.4$ and Gr = 100
- Fig.2.8: Variation of induced magnetic field for different Gr when N = 4, $r_T = 0.4$ and $M^2 = 5$
- field for different r_T when N = 4, $M^2 = 5$ and Gr = 100
- different N when $r_T = 0.4$
- Fig.2.11: Variation of temperature for different r_T when N = 4

- **Fig.2.12:** Shear stresses for different Nwhen $M^2 = 5$ and Gr = 50
- **Fig.2.13:** Shear stresses for different M^2 when N = 4 and Gr = 50
- Fig.3.1: Geometry of the problem
- **Fig.3.2:** Steady primary velocity u_0 and steady secondary velocity v_0 corresponding to the steady uniform velocity U_0 for K^2 with $M^2 = 5$
- **Fig.3.3:** Steady primary velocity u_0 and steady secondary velocity v_0 corresponding to the steady uniform velocity U_0 for M^2 with $K^2 = 4$
- **Fig.3.4:** Unsteady primary velocity u_{uns} for K^2 with $M^2 = 5$, $\omega = 12$ and $\omega \tau = 90^0$
- Fig.3.5: Unsteady secondary velocity $v_{\rm uns}$ for K^2 with $M^2 = 5$, $\omega = 12$ and $\omega \tau = 90^0$
- **Fig.3.6:** Unsteady primary velocity u_{uns} for ω with $M^2 = 5$, $K^2 = 4$ and $\omega\tau=90^0$
- Fig.2.9: Variation of induced magnetic Fig.3.7: Unsteady secondary velocity $v_{\rm uns}$ for ω with $M^2 = 5$, $K^2 = 4$ and $\omega \tau = 90^0$
- Fig.2.10: Variation of temperature for Fig.3.8: Unsteady velocity distributions $u_{\rm uns}$ and $v_{\rm uns}$ for $\omega \tau$ with $M^2 = 5$, $\omega = 12$ and $K^2 = 4$

Fig.4.1: Physical configuration

- varying M^2
- Fig.4.2(b): Secondary velocity profiles w_1 varying M^2
- **Fig.4.2(c):** Primary velocity profiles u_1 varying K^2
- Fig.4.2(d): Secondary velocity profiles w_1 varying K^2
- **Fig.4.2(e):** Primary velocity profiles u_1 varying Re
- Fig.4.2(f): Secondary velocity profiles w_1 varying Re
- **Fig.4.2(g):** Primary velocity profiles u_1 varying $n\tau$
- Fig.4.2(h): Secondary velocity profiles w_1 varying $n\tau$
- Fig.4.3(a): Temperature profiles varying Re
- Fig.4.3(b): Temperature profiles varying Pr
- **Fig.4.3(c):** Temperature profiles varying Ec
- Fig.4.3(d): Temperature profiles varying δ
- Fig.4.3(e): Temperature profiles varying Bi_1
- Fig.4.3(f): Temperature profiles varying Fig.5.3(f): Temperature Bi_2

- Fig.4.2(a): Primary velocity profiles u_1 Fig.4.3(g): Temperature profiles varying au
 - Fig.4.3(h): Time evolution of temperature profiles varying η and τ
 - **Fig.4.4(a):** Shear stress τ_{x_0} varying K^2
 - **Fig.4.4(b):** Shear stress τ_{z_0} varying K^2
 - **Fig.4.4(c):** Shear stress τ_{x_0} varying Re
 - **Fig.4.4(d):** Shear stress τ_{z_0} varying Re
 - **Fig.4.4(e):** Shear stress τ_{x_0} varying $n\tau$
 - **Fig.4.4(f):** Shear stress τ_{z_0} varying $n\tau$
 - Fig.5.1: Sketch of physical problem and coordinate system

Fig.5.2(a): Velocity profiles varying M^2

- **Fig.5.2(b):** Velocity profiles varying C
- **Fig.5.2(c):** Velocity profiles varying *Da*
- **Fig.5.2(d):** Velocity profiles varying λ
- Fig.5.3(a): Temperature distributions varying M^2
- Fig.5.3(b): Temperature distributions varying Da
- Fig.5.3(c): Temperature distributions varying λ
- Fig.5.3(d): Temperature distributions varying N
- Fig.5.3(e): Temperature distributions varying Pr
- distributions varying Ec

- when $M^2 = 0$, C = 1, Da = 0.1, $\lambda = 0.5$
- Fig.5.4(b): Variation of stream lines when $M^2 = 10, C = 1, Da = 0.1,$ $\lambda = 0.5$
- Fig.5.4(c): Variation of stream lines when Da = 0.01, C = 1, $M^2 = 5$, $\lambda = 0.5$
- Fig.5.4(d): Variation of stream lines when Da = 0.1, C = 1, $M^2 = 5$, $\lambda = 0.5$
- Fig.5.4(e): Variation of stream lines when $C = 0, M^2 = 5, Da = 0.1,$ $\lambda = 0.5$
- Fig.5.4(f): Variation of stream lines when C = 5, $M^2 = 5$, Da = 0.1, $\lambda = 0.5$
- Fig.5.4(g): Variation of stream lines when $\lambda = 0, M^2 = 5, C = 1,$ Da = 0.1
- Fig.5.4(h): Variation of stream lines when $\lambda = 1, M^2 = 5, C = 1,$ Da = 0.1

Fig.6.1 : Physical configuration

- **Fig.6.2(a):** Primary velocity profiles u_1 varying M^2 when N = 2, m = 0.5, $Gr = 5, Pr = 0.71 \text{ and } \tau = 0.5$
- Fig.6.2(b): Secondary velocity profiles w_1 varying M^2 when N = 2, m =0.5, Gr = 5, Pr = 0.71 and $\tau = 0.5$

- **Fig.5.4(a):** Variation of stream lines **Fig.6.2(c):** Primary velocity profiles u_1 varying m when $N = 2, M^2 = 10,$ $Gr = 5, Pr = 0.71 \text{ and } \tau = 0.5$
 - Fig.6.2(d): Secondary velocity profiles w_1 varying m when $N = 2, M^2 =$ 10, Gr = 5, Pr = 0.71 and $\tau = 0.5$
 - **Fig.6.2(e):** Primary velocity profiles u_1 varying N when $m = 0.5, M^2 = 10$, $Gr = 5, Pr = 0.71 \text{ and } \tau = 0.5$
 - Fig.6.2(f): Secondary velocity profiles w_1 varying N when $m = 0.5, M^2 =$ 10, Gr = 5, Pr = 0.71 and $\tau = 0.5$
 - **Fig.6.2(g):** Primary velocity profiles u_1 varying Gr when N = 2, m = 0.5, $M^2 = 10, Pr = 0.71 \text{ and } \tau = 0.5$
 - Fig.6.2(h): Secondary velocity profiles w_1 varying Gr when N = 2, m =0.5. $M^2 = 10$, Pr = 0.71 and $\tau =$ 0.5
 - Fig.6.2(i): Primary velocity profiles u_1 varying Pr when N = 2, m = 0.5, $M^2 = 10, Gr = 5 \text{ and } \tau = 0.5$
 - **Fig.6.2(j):** Secondary velocity profiles w_1 varying Pr when N = 2, m = 0.5, $M^2 = 10, Gr = 5 \text{ and } \tau = 0.5$
 - **Fig.6.2(k):** Primary velocity profiles u_1 varying τ when N = 2, m = 0.5, $M^2 = 10, Gr = 5 \text{ and } Pr = 0.71$
 - **Fig.6.2(1):** Secondary velocity profiles w_1 varying τ when N = 2, m = 0.5, $M^2 = 10, Gr = 5 \text{ and } Pr = 0.71$

- **Fig.6.3(a):** Time evolution of u_1 -profiles **Fig.6.5(e):** Shear stress τ_x varying Grvarying η and τ for impulsive motion
- **Fig.6.3(b):** Time evolution of u_1 -profiles varying η and τ for accelerated motion
- **Fig.6.3(c):** Time evolution of w_1 -profiles varying η and τ for impulsive motion
- **Fig.6.3(d):** Time evolution of w_1 -profiles varying η and τ for accelerated motion
- Fig.6.4(a): Temperature profiles varying N when Pr = 0.71 and $\tau = 0.5$
- **Fig.6.4(b):** Temperature profiles varying Pr when N = 2 and $\tau = 0.5$
- Fig.6.4(c): Temperature profiles varying τ when N = 2 and Pr = 0.71
- Fig.6.4(d): Time evolution of temperature profiles varying η and τ when N = 2 and Pr = 0.71
- **Fig.6.5(a):** Shear stress τ_x varying M^2 when N = 2, Gr = 5, Pr = 0.71and $\tau = 0.5$
- **Fig.6.5(b):** Shear stress τ_z varying M^2 when N = 2, Gr = 5, Pr = 0.71and $\tau = 0.5$
- **Fig.6.5(c):** Shear stress τ_x varying N when Gr = 5, Pr = 0.71, $M^2 = 10$ and $\tau = 0.5$
- **Fig.6.5(d):** Shear stress τ_z varying N when Gr = 5, Pr = 0.71, $M^2 = 10$ and $\tau = 0.5$

- when N = 2, Pr = 0.71, $M^2 = 10$ and $\tau = 0.5$
- **Fig.6.5(f):** Shear stress τ_z varying Grwhen N = 2, Pr = 0.71, $M^2 = 10$ and $\tau = 0.5$
- **Fig.6.5(g):** Shear stress τ_x varying Prwhen $N = 2, Gr = 5, M^2 = 10$ and $\tau = 0.5$
- **Fig.6.5(h):** Shear stress τ_z varying Prwhen $N = 2, Gr = 5, M^2 = 10$ and $\tau = 0.5$
- **Fig.6.5(i):** Shear stress τ_x varying τ when N = 2, Gr = 5, Pr = 0.71and $M^2 = 10$
- **Fig.6.5(j):** Shear stress τ_z varying τ when N = 2, Gr = 5, Pr = 0.71and $M^2 = 10$
- Fig.6.6(a): Rate of heat transfer varying Pr when $\tau = 0.5$
- Fig.6.6(b): Rate of heat transfer varying τ when Pr = 0.71
- Fig.7.1 : Geometry of the problem
- Fig.7.2(a): Primary velocity profiles across the channel with increasing time when $M^2 = 10$, m = 0.2 and $\operatorname{Re} = 0.5$
- Fig.7.2(b): Secondary velocity profiles across the channel with increasing time when $M^2 = 10$, m = 0.2 and Re = 0.5

- M^2 when Re = 0.5, m = 0.2 and $\tau = 0.6$
- Fig.7.3(b): Secondary velocity for different M^2 when Re = 0.5, m = 0.2 and $\tau = 0.6$
- Fig.7.4(a): Primary velocity for different m when Re = 0.5, $M^2 = 10$ and $\tau = 0.6$
- Fig.7.4(b): Secondary velocity for different m when Re = 0.5, $M^2 = 10$ and $\tau = 0.6$
- Fig.7.5(a): Primary velocity for different Re when $M^2 = 10$, m = 0.2 and $\tau = 0.6$
- Fig.7.5(b): Secondary velocity for different Re when $M^2 = 10$, m = 0.2 and $\tau = 0.6$
- Fig.7.6(a): Primary velocity for different τ when Re = 0.5, m = 0.2 and $M^2 = 10$
- Fig.7.6(b): Secondary velocity for different τ when Re = 0.5, m = 0.2 and $M^2 = 10$
- **Fig.7.7(a):** Shear stress τ_{x_1} for different M^2 when Re = 2 and $\tau = 0.5$
- **Fig.7.7(b):** Shear stress τ_{z_1} for different M^2 when Re = 2 and $\tau = 0.5$
- **Fig.7.8(a):** Shear stress τ_{x_1} for different Re when $M^2 = 10$ and $\tau = 0.5$
- **Fig.7.8(b):** Shear stress τ_{z_1} for different Re when $M^2 = 10$ and $\tau = 0.5$

- Fig.7.3(a): Primary velocity for different Fig.7.9: Temperature profiles across the channel with increasing time when $M^2 = 5, m = 0.1, \text{Re} = 1, \text{Pr} =$ 0.72, Ec = 0.1, $\delta = 0.1$, $\lambda = 0.1$ and $\varepsilon = 0.1$
 - Fig.7.10: Temperature profiles for different M^2 when Re = 1, Pr = 0.72, $m = 0.1, Ec = 0.1, \lambda = 0.1, \delta = 0.1,$ $\tau = 0.1$ and $\varepsilon = 0.1$
 - Fig.7.11: Temperature profiles for different *m* when $M^2 = 5$, Pr = 0.72, Re = 1, Ec = 0.1, $\delta = 0.1$, $\lambda = 0.1$, $\tau = 0.1$ and $\varepsilon = 0.1$
 - Fig.7.12: Temperature profiles for different Re when $M^2 = 5$, Pr = 0.72, m = 0.1, Ec = 0.1, $\lambda = 0.1$, $\delta = 0.1$, $\tau = 0.1$ and $\varepsilon = 0.1$
 - Fig.7.13: Temperature profiles for different δ when $M^2 = 5$, Pr = 0.72, m = 0.1, Ec = 0.1, Re = 1, $\lambda = 0.1$, $\tau = 0.1$ and $\varepsilon = 0.1$
 - **Fig.7.14:** Rate of heat transfer $\theta'(1, \tau)$ for different Re when Ec = 0.1, m =0.1, Pr = 0.72, $M^2 = 5$, $\delta = 0.1$, $\lambda = 0.1$ and $\varepsilon = 0.1$
 - **Fig.7.15:** Rate of heat transfer $\theta'(1,\tau)$ for different δ when Re = 1, m = 0.1, $Pr = 0.72, M^2 = 5, Ec = 0.1,$ $\lambda = 0.1$ and $\varepsilon = 0.1$