
Chapter 7

Hall effects on unsteady MHD

reactive flow through a porous

channel with convective heating

under Arrhenius reaction rate∗

7.1 Introduction

Magnetohydrodynamics (MHD) is concerned with the mutual interaction of a conduct-

ing fluid flow and magnetic field. The fluids being investigated are electrically conduct-

ing and nonmagnetic, which limits them to liquid metals, hot ionized gases (plasmas)

and strong electrolytes. Fluid flows under the influence of an applied magnetic field

occur in certain engineering processes like glass manufacturing, crude oil refinement,

paper production, polymer technology, petroleum industries, geothermal energy extrac-

tion and boundary-layer control in the field of aerodynamics and blood flow. In recent

years, hydromagnetic flow and heat transfer in it have received considerable attention

due to their various applications in science, engineering and industry. Several authors

have studied the magnetohydrodynamic flow and heat transfer under various physical

situations [374-392].

When a strong magnetic field is applied, the influence of electromagnetic force is

noticeable and this field induces many complex phenomenons in an electrically conduct-
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ing flow regime including the Hall currents, Joule heating etc., as stated by Cramer and

Pai [12]. In fact, in an ionized gas in a strong magnetic field when the density is low,

the Hall current is induced perpendicularly to both electric and magnetic fields. It has

significant effect on the current density and hence on the electromagnetic force. Sutton

and Sherman [355] have investigated a hydromagnetic flow of a viscous ionized gas be-

tween two parallel plates taking the Hall effects into account. It is the first significant

study to include Hall effects where it is indicated that a fluid flow in a parallel plate

channel becomes secondary in nature. The Hall currents have a significant effect on the

magnitude and direction of the current density and consequently on the magnetic force.

A theoretical study of unsteady magnetohydrodynamic viscous HartmannCouette lam-

inar flow and heat transfer in a Darcian channel with the Hall current, ion slip as well

as viscous and Joule heating effects have been explained by Bég et al. [238] under a

constant pressure gradient. Ghosh et al. [250] have studied the Hall effects on an MHD

flow in a rotating system. Ghosh et al. [253] have obtained a closed form solutions for

the transient hydromagnetic flow in a rotating channel with inclined applied magnetic

field under the influence of a forced oscillation. A numerical study on MHD generalized

Couette flow and heat transfer with variable viscosity and electrical conductivity have

been performed by Makinde and Onyejekwe [243]. Makinde and Chinyoka [202] have

studied an unsteady hydromagnetic generalized Couette flow and heat transfer char-

acteristics of a reactive variable viscosity incompressible electrically conducting third

grade fluid in a channel with asymmetric convective cooling at the walls in the presence

of uniform transverse magnetic field. Ghara et al. [43] have examined the unsteady

MHD Couette flow of an incompressible viscous electrically conducting fluid between

two infinite nonconducting horizontal porous plates under the boundary layer approx-

imations considering both Hall currents and ion-slip. Abd El-Meged et al. [393] have

obtained an analytical solution for a transient Hartmann flow with the Hall current

and ion slip.

In almost all of the above mentioned studies, constant fluid properties are assumed.

However, experiments indicate that this can hold only if the temperature does not

change rapidly or impulsively. Hence, more accurate prediction of flow and heat trans-

fer can be obtained only by considering variations of the fluid and electromagnetic

properties, especially the temperature variations of the fluid viscosity, thermal conduc-

tivity and the electrical conductivity. Generally speaking, most lubricants used in both

engineering and industrial processes are reactive, e.g. hydrocarbon oils, polyglycols,

synthetic esters, polyphenylethers etc., and their efficiency depends largely on the tem-

perature variation. Thus, it is important to determine the heat transfer conditions and
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thermal loading properties of viscous reactive fluids to estimate their effectiveness as

lubricants. The second law analysis of a Couette flow of a reactive fluid with variable

viscosity and the Arrhenius kinetics has been carried out by Kobo and Makinde [270].

Das et al. [394] have considered the Hall effects on MHD Couette flow in a rotating

system. Chinyoka and Makinde [395] have studied a transient generalized Couette flow

of a reactive variable viscosity third-grade liquid with asymmetric convective cooling.

Makinde and Eegunjobi [244] have analyzed the inherent irreversibility in an MHD

generalized Couette flow of variable viscosity. Theuri and Makinde [396] have pre-

sented the thermodynamic analysis of an MHD unsteady generalized Couette flow of

a viscous fluid with variable viscosity. The steady generalized axial Couette flow of

power law reactive fluids between concentric cylindrical pipes has been presented by

Makinde [273]. Makinde and Franks [272] have investigated the effect of magnetic field

on a reactive unsteady generalized Couette flow with temperature dependent viscosity

and thermal conductivity. Das et al. [397] have considered transient hydromagnetic

reactive Couette flow and heat transfer in a rotating frame of reference. Veera Krishna

and Swarnalathamma [398] have demonstrated the Hall effects on an unsteady MHD

reactive flow of second grade fluid through porous medium in a rotating parallel plate

channel.

This chapter is devoted to investigate the effects of the Hall currents on an unsteady

hydromagnetic flow of a reactive, viscous, incompressible, electrically conducting fluid

between infinite horizontal parallel plates. The governing momentum equations are

solved analytically by the Laplace transform technique. It is assumed that a conducting

incompressible fluid is subjected to an exothermic reaction with the Arrhenius kinetics

and neglecting the consumption of the material.

7.2 Mathematical Formulation

Consider an unsteady MHD flow of a viscous incompressible electrically conducting

fluid between two infinite horizontal parallel plates. Let h be the distance between

these plates and h be small in comparison with the characteristic length of the plates.

The upper plate moves with a velocity U(t) which is a known function of time t in

its own plane in the x-direction, where the x-axis is placed on the lower stationary

plate. The y-axis is normal to the x-axis and the z-axis is normal to the xy-plane (see

Fig.7.1). It is assumed that the flow is fully developed. Further, there is no applied

pressure gradient as the flow is due to the motion of the upper plate. A uniform trans-

verse magnetic field of strength B0 is applied perpendicular to the plates with uniform
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suction/injection. Initially, at time t ≤ 0, the plates and fluid are assumed to be at the

same temperature T0 and stationary. At time t > 0, the plate at y = h starts to move

in its own plane with the velocity U(t), whereas the plate at y = 0 is stationary. The

plates are maintained at a constant temperature T0. Since the plates are infinitely long

along the x- and z-directions, all physical quantities are functions of y and t only. The

equation of continuity then yields v = −v0 everywhere in the fluid.

0B

o

Main flow

Sec
on

dar
y 

flo
w

 d
ue 

to

H
al

l e
ff
ec

ts

z

x

y
( )U t

0y =

y h=

0v

0B

0T

0T

Fig.7.1 : Geometry of the problem

The generalized Ohm’s law with the Hall currents taken into account is [7]

~j +
ωe τe
B0

(
~j × ~B

)
= σ

(
~E + ~q × ~B

)
, (7.1)

where ~q, ~B, ~E, ~j, σ, ωe and τe are respectively the velocity vector, the magnetic

field vector, the electric field vector, the current density vector, electrical conductivity,

cyclotron frequency and electron collision time. Here the ion slip and thermoelectric

effects as well as the electron pressure gradient are neglected. The quantity in the

parenthesis on the right-hand side is the electric field in a rotating frame. The first

term on the left-hand side is the electron drag on the ions and the second term is

the Hall term according to the idea that electrons and ions can decouple and moves

separately. It is assumed that the magnetic Reynolds number is very small so that

the induced magnetic field can be neglected [7]. This assumption is justified since the

magnetic Reynolds number is generally very small for metallic and partially ionized

fluids.
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The magnetic Reynolds number is the magnetic analogue of the Reynolds number

and describes the interaction of fluids with a magnetic field. At high values of the mag-

netic Reynolds number, the magnetic field moves with the flow and this constitutes the

frozen-in scenario which is important for the induction problems. When the magnetic

Reynolds number is much less than unity, the magnetic field is not distorted by the flow

field. When this number is small, the induced magnetic field is negligible in compari-

son to the applied one. The magnetic Prandtl number Pm is the ratio of the magnetic

Reynolds number to the ordinary one, i.e. the ratio of the kinematic viscosity to the

magnetic diffusivity. The number Pm is generally less, but not greatly less, than unity

in induced magnetohydrodynamic flows. It measures the relative magnitude of the hy-

drodynamic and magnetic boundary layer thicknesses. For liquid metals, Pm ∼ 10−9

to 10−5, i.e. it is extremely low, since the magnetic diffusivity of such fluids is very

high. The value Pm = 0.72 corresponds to ionized hydrogen. In astrophysical flows, at

the base of the solar convection zone, Pm attains the value 10−2 (Ghosh et at.[253]).

The solenoidal relation ∇· ~B = 0 gives By = constant = B0 everywhere in the flow,

where ~B ≡ (0, By, 0). The expression for the conservation of electric current ∇ ·~j = 0

yields jz = constant, where ~j ≡ (jx, jy, jz). This constant is zero since jy = 0 at the

plates that are electrically non-conducting. Hence, jy = 0 everywhere in the flow. In

view of the above assumptions, equation (7.1) yields

jx −mjz = σ(Ex − wB0), (7.2)

jz +mjx = σ(Ez + uB0), (7.3)

where m = ωe τe is the Hall parameter which can take positive or negative values. In

general, for an electrically conducting fluid, the Hall currents affect the flow in the

presence of a strong magnetic field. The effect of the Hall currents gives rise to a force

in the z-direction, which induces a cross flow in that direction. To simplify the problem,

it is assumed that there are no variations in the flow quantities in the z-direction. This

assumption is justified as the plate is of infinite extent in the z-direction.

Since the induced magnetic field is neglected, Maxwell’s equation ∇ × ~E = −∂ ~B
∂t

becomes ∇× ~E = 0 which yields ∂Ex

∂y = 0 and ∂Ez

∂y = 0. This implies that Ex = constant

and Ez = constant everywhere in the flow.

Obtaining jx and jz from equations (7.2) and (7.3), we have

jx =
σ

1 +m2
[B0 (mu− w) + (Ex +mEz)] , (7.4)

jz =
σ

1 +m2
[B0 (u+mw) + (Ez −mEx)] . (7.5)
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Assuming that jx = 0 and jz = 0 at the plate y = h, since the channel plates are

electrically non-conducting and using the boundary condition at this plate, we have

jx =
σB0

1 +m2
[m(u−U)− w] , (7.6)

jz =
σB0

1 +m2
[(u−U) +mw] . (7.7)

Using equations (7.6) and (7.7), we write the Navier-Stokes equations of motion as

∂u

∂t
− v0

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
− σB2

0

ρ(1 +m2)
[(u−U) +mw] , (7.8)

∂w

∂t
− v0

∂w

∂y
= −1

ρ

∂p

∂z
+ ν

∂2w

∂y2
+

σB2
0

ρ(1 +m2)
[m(u−U)− w] , (7.9)

where u and w are the fluid velocity components along the x- and z-directions respec-

tively, ρ the fluid density, ν the kinematic viscosity and p the fluid pressure. Equations

(7.8) and (7.9) describe a hydromagnetic flow of any conducting medium between infi-

nite horizontal parallel plates due to the motion of the upper plate.

The initial and boundary conditions are

t ≤ 0 : u = w = 0 for 0 ≤ y ≤ h,

t > 0 : u = w = 0 at y = 0 and u = U(t), w = 0 at y = h. (7.10)

After the use of the boundary condition at y = h, we have

∂U

∂t
= −1

ρ

∂p

∂x
, 0 = −1

ρ

∂p

∂z
(7.11)

On the use of equation (7.11), equations (7.8) and (7.9) become

∂u

∂t
− v0

∂u

∂y
=

∂U

∂t
+ ν

∂2u

∂y2
− σB2

0

ρ(1 +m2)
[(u−U) +mw] , (7.12)

∂w

∂t
− v0

∂w

∂y
= ν

∂2w

∂y2
+

σB2
0

ρ(1 +m2)
[m (u−U)− w] . (7.13)

Introducing the non-dimensional variables

η =
y

h
, (u1, w1) =

(u,w)

u0
, τ =

νt

h2
, U(t) = u0f(τ) (7.14)

equations (7.12) and (7.13) become

∂u1
∂τ

− Re
∂u1
∂η

=
∂f

∂τ
+
∂2u1
∂η2

− M2

1 +m2
[u1 − f(τ) +mw1] , (7.15)

∂w1

∂τ
− Re

∂w1

∂η
=

∂2w1

∂η2
+

M2

1 +m2
[m {u1 − f(τ)} − w1] , (7.16)
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where M2 =
σB2

0
h2

ρν is the squared-Hartmann number representing the ratio of the

electromagnetic (Lorentz) force to the viscous force, Re = v0h
ν the suction/injection

Reynolds number and u0 being a constant.

The initial and boundary conditions (7.10) become

τ ≤ 0 : u1 = w1 = 0 for 0 ≤ η ≤ 1,

τ > 0 : u1 = w1 = 0 at η = 0 and u1 = f(τ), w1 = 0 at η = 1. (7.17)

Combining equations (7.15) and (7.16), we get

∂q

∂τ
− Re

∂q

∂η
=

∂f

∂τ
+
∂2q

∂η2
− M2(1− im)

1 +m2
[q − f(τ)] , (7.18)

where q = u1 + i w1 and i =
√
−1.

The initial and boundary conditions for q(η, τ) are

τ ≤ 0 : q = 0 for 0 ≤ η ≤ 1,

τ > 0 : q = 0 at η = 0 and q = f at η = 1. (7.19)

Performing the Laplace transformation, from equation (7.18), we obtain

d2q̄

dη2
+Re

dq̄

dη
− (s+ a)q̄ = −(a+ s)f̄(s), (7.20)

where

q̄(η, s) =

∞∫

0

q(η, τ) e−sτ dτ, a =
M2 (1− i m)

(1 +m2)
. (7.21)

The boundary conditions for q̄(η, s) are

q̄(0, s) = 0 and q̄(1, s) = f̄(s), (7.22)

where f̄(s) is the Laplace transform of f(τ).

The solution of equation (7.20) subject to the boundary conditions (7.22) is given

by

q̄(η, s) = f̄(s)

[
1−

e−
Re
2
η sinh

√
a+ s+ Re2

4 (1− η)

sinh
√
a+ s+ Re2

4

]
. (7.23)
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7.2.1 When the upper plate is set into impulsive motion

For impulsive motion f(τ) = 1, i.e. f̄(s) = 1
s . Then the inverse Laplace transform of

the equation (7.23) gives the velocity field as

q(η, τ) = 1− e−
Re
2
η

[
sinh(α+ i β) (1− η)

sinh(α+ i β)

− 2
∞∑

n=1

es1τ

s1
· nπ sinnπη

]
, (7.24)

where

s1 = −
(
a+ n2π2 + Re2

4

)
,

α, β = 1√
2

[{(
M2

1+m2 + Re2

4

)2
+
(

mM2

1+m2

)2} 1

2

±
(

M2

1+m2 + Re2

4

)] 1

2

. (7.25)

Equation (7.24) represents the general solution for the unsteady, impulsively started,

hydromagnetic flow through a channel with the magnetic lines of force fixed relative to

the fluid. The solution (7.24) exists for both injection at the lower plate and suction at

the upper moving plate. On separating equation (7.24) into real and imaginary parts,

one can easily obtain the velocity components u1 and w1. In the absence of the Hall

currents (m = 0), the present problem reduces to the problem studied by Makinde and

Franks [272].

7.2.2 When the upper plate starts to move with uniform

acceleration

For accelerated motion f(τ) = τ , i.e. f̄(s) = 1
s2 . The inverse Laplace transform of

equation (7.23) yields the velocity field as

q(η, τ) = τ − e−
Re
2
η

[
τ · sinh(α+ i β) (1− η)

sinh(α+ i β)
− 2

∞∑

n=1

es1τ

s21
· nπ sinnπη

+
sinh(α+ i β) η

2 (α+ i β) sinh2(α+ i β)
− η cosh(α+ i β) (1− η)

2 (α+ i β) sinh(α+ i β)

]
, (7.26)

where α, β and s1 are given by (7.25).

Equation (7.26) represents the general solution for the unsteady, uniformly accel-

erated, hydromagnetic flow through a channel with the magnetic lines fixed relative to

the fluid.



7.3. Results and discussion 155

7.3 Results and discussion

In order to get a physical insight into the problem, a parametric study is performed and

the obtained numerical results are elucidated with the help of graphical illustrations.

We present the non-dimensional fluid velocity components u1 and w1 for several values

of the squared-Hartmann number M2, Hall parameter m, Reynolds number Re and

time τ in Figs.7.2-7.6. As M2 > 1, the hydromagnetic drag force is greater than the

viscous hydrodynamic force. The caseM2 = 0 corresponds to the absence of the applied

magnetic field in the fluid flow, the case m → ∞, to the hydrodynamic flow and the

case m = 0, to the MHD flow in the absence of the Hall currents.

7.3.1 Parameter effects on the primary and secondary ve-

locity profiles

Figs.7.2(a) and 7.2(b) show the time evolution of the primary velocity profile u1 and

secondary velocity profile w1 at fixed parameters. The primary velocity increases from

the zero value at the lower fixed plate to a maximum value at the upper moving plate.

The secondary velocity is maximum near the central region of the channel.
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Fig.7.2(a): Primary velocity profiles across the channel with increasing time

when M2 = 10, m = 0.2 and Re = 0.5
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Fig.7.2(b): Secondary velocity profiles across the channel with increasing time

when M2 = 10, m = 0.2 and Re = 0.5
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Fig.7.3(a): Primary velocity for different M2 when Re = 0.5, m = 0.2 and τ = 0.6

It is seen from Fig.7.3(a) and 7.3(b) that the primary velocity u1 increases and the

secondary velocity w1 first increases near the lower plate and then is retarded with in-

crease in the squared-Hartmann number M2. When a conducting fluid flow is exposed

to a magnetic field, the coupling between the flow field and magnetic field occurs. From

the physical point of view, it is known that the lines of force representing an applied

magnetic field influence the fluid flow. The fluid which is decelerated by the viscous

force, receives a push from the magnetic field which counteracts the viscous effects.
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Hence, the fluid velocity components increase with M2.
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Fig.7.3(b): Secondary velocity for different M2 when Re = 0.5, m = 0.2 and τ = 0.6
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Fig.7.4(a): Primary velocity for different m when Re = 0.5, M2 = 10 and τ = 0.6

The primary velocity u1 decreases with increase in the Hall parameter m, as seen

in Fig.7.4(a). The influence of the Hall currents on the secondary fluid velocity w1 is

shown in Fig.7.4(b). It is seen that w1 increases with m. This is because the effective

term 1/(1+m2) decreases as m increases and hence, the resistive effect of the magnetic

field is diminished. Since the magnetic field is strong, the electromagnetic force be-

comes very large, which results in the occurrence of the Hall currents. The secondary

velocity is totally dependent on the Hall currents; therefore it can be manipulated by
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changing the Hall parameter.
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Fig.7.4(b): Secondary velocity for different m when Re = 0.5, M2 = 10 and τ = 0.6
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Fig.7.5(a): Primary velocity for different Re when M2 = 10, m = 0.2 and τ = 0.6

Figs.7.5(a) and 7.5(b) show that the primary velocity u1 increases whenever the

secondary velocity w1 decreases with increase in the Reynolds number Re.
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Fig.7.5(b): Secondary velocity for different Re when M2 = 10, m = 0.2 and τ = 0.6
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Fig.7.6(a): Primary velocity for different τ when Re = 0.5, m = 0.2 and M2 = 10

Figs.7.6(a) and 7.6(b) show that the primary velocity u1 decreases while the sec-

ondary velocity w1 increases with time τ . The velocity components are larger for

impulsive motion compared to the uniform acceleration of the upper moving plate, as

shown in Figs.7.3-7.6.
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Fig.7.6(b): Secondary velocity for different τ when Re = 0.5, m = 0.2 and M2 = 10

7.3.2 Parameter effects on the shear stresses

For engineering design, the shear stresses at the channel plates are important. For

impulsive motion, the non-dimensional shear stresses τx0
and τz0 at the plate η = 0 due

to the primary and secondary flows are given by

τx0
+ iτz0 =

∂q

∂η

]

η=0

=
Re

2
+ (α+ i β) coth(α+ i β)− 2

∞∑

n=1

es1τ

s1
n2π2. (7.27)

For accelerated motion, the shear stresses at the plate η = 0 are given as

τx0
+ iτz0 =

∂q

∂η

]

η=0

= τ · Re
2

+

[
τ(α+ i β) cosh(α+ i β)

sinh(α+ i β)

− (α+ i β)− sinh(α+ i β) cosh(α+ i β)

2(α+ i β) sinh2(α+ i β)

]

− 2
∞∑

n=1

es1τ

s21
n2π2, (7.28)

where α, β and s1 are given by (7.25).
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On separating these equations into real and imaginary parts, one can easily obtain

the shear stress components due to the primary and secondary flows for impulsive and

accelerated motions.

For impulsive motion, the non-dimensional shear stresses τx1
and τz1 at the plate η = 1

due to the primary and secondary flows are given by

τx1
+ iτz1 =

∂q

∂η

]

η=1

= e−
Re

2

[
(α+ i β)

sinh(α+ i β)
− 2

∞∑

n=1

(−1)n
es1τ

s1
n2π2

]
. (7.29)

For accelerated motion, the shear stresses at the plate η = 1 are given as

τx1
+ iτz1 =

∂q

∂η

]

η=1

= e−
Re

2

[
τ

(α+ i β)

sinh(α+ i β)
− (α+ i β) cosh(α+ i β)− sinh(α+ i β)

2(α + i β) sinh2(α + i β)

− 2
∞∑

n=1

(−1)n
es1τ

s21
n2π2

]
, (7.30)

where α, β and s1 are given by (7.25).

The numerical values of the non-dimensional shear stresses at the plate η = 1 are

presented in Figs.7.7 and 7.8 for several values of M2, m and Re. Figs.7.7(a) and

7.7(b) show that both the shear stresses are reduced when M2 increases for both kinds

of motion of the upper plate. On the other hand, both the shear stresses are enhanced

with the Hall parameter m.
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Fig.7.7(a): Shear stress τx1
for different M2 when Re = 2 and τ = 0.5
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Fig.7.7(b): Shear stress τz1 for different M2 when Re = 2 and τ = 0.5

An increase in the suction/injection Reynolds number Re leads to a reduction in

both the shear stresses τx1
and τz1 for both kinds of motion, as shown in Figs.7.8(a)

and 7.8(b). The positive values of the shear stresses signify that the moving upper

plate exerts a drag force on the fluid along the flow direction.
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Fig.7.8(a): Shear stress τx1
for different Re when M2 = 10 and τ = 0.5
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Fig.7.8(b): Shear stress τz1 for different Re when M2 = 10 and τ = 0.5

7.3.3 Heat Transfer

The energy equation taking viscous and Joule dissipations into account is given by

ρcp

(
∂T

∂t
− v0

∂T

∂y

)
=

∂

∂y

(
k
∂T

∂y

)
+QC0A0 exp

(
− E

RT

)

+ µ

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
+

σB2
0

1 +m2

[
(u−U)2 + w2

]
,(7.31)
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where k is the thermal conductivity, cp the specific heat at constant pressure, T the

temperature of the fluid, µ the coefficient of viscosity, Q the heat of reaction, C0

the initial concentration of reacting species, A0 the rate constant, R the universal

gas constant, E the reaction activity energy. The first term on the right-hand side

describes heat conduction, the second term, the Arrhenius reaction, the third term,

viscous dissipation and the fourth term, the Joule heating.

The initial and boundary conditions for the temperature are

t ≤ 0 : T = 0 for 0 ≤ y ≤ h,

t > 0 : T = T0 at y = 0 and T = T0 at y = h. (7.32)

Following [272], the fluid thermal conductivity is assumed to vary exponentially with

the temperature as

k(T ) = k0 exp (m0(T − T0)) ≈ k0[1 +m0(T − T0)], (7.33)

where parameter m0 may be positive for some fluids such as air or water vapour and

negative for others like benzene.

Introducing the non-dimensional variable θ = E(T−T0)
RT 2

0

and using (7.14), equation

(7.31) becomes

Pr

(
∂θ

∂τ
− Re

∂θ

∂η

)
=

∂

∂η

[
(1 + δ θ)

∂θ

∂η

]
+ λ exp

(
θ

1 + ǫ θ

)
+PrEc

×
[{(

∂u1
∂η

)2

+

(
∂w1

∂η

)2
}
+

M2

1 +m2

{
(u1 − f(τ))2 + w2

1

}]
, (7.34)

where λ = QA0C0E h2

RT 2
0
k0

exp
(
− E

RT0

)
is the Frank-Kamenetskii parameter or the reaction

rate parameter, ǫ = RT0

E the activation energy parameter, δ =
m0 RT 2

0

E the thermal

conductivity variation parameter, Pr =
ρ ν cp
k0

the Prandtl number which is defined as

the ratio of the momentum diffusivity (kinematic viscosity) to the thermal diffusivity

and Ec =
E u2

0

cpRT 2
0

the Eckert number which expresses the relationship between the

kinetic energy and flow enthalpy. The Eckert number is used in high altitude rocket

aero-thermodynamics.

The corresponding initial and boundary conditions are

θ(η, 0) = 0 for 0 ≤ η ≤ 1,

θ(0, τ) = 0 and θ(1, τ) = 0 for τ > 0. (7.35)
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The analytical solutions for the fluid velocity given by equations (7.24) and (7.26)

are used in equation (7.34) and the resulting differential equation with boundary con-

ditions (7.35) is solved numerically with the help of MATLAB software package. For

the analysis of the heat transfer characteristics in the flow, the energy equation is

taken where all the convective terms equal to zero because of the assumed temperature

boundary conditions. Therefore, the temperature distribution in the channel is due to

the heat generation by the viscous and Joule dissipations and conduction through the

fluid in the transverse direction. The Prandtl number (Pr) is chosen as 0.72 ≤ Pr ≤ 2,

since such values of Pr are typical of most of the fluids used in plasma physics, engineer-

ing and industries. The case Ec = 0 represents the absence of viscous and Joule heating.

7.3.4 Parameter effects on the temperature profiles

Fig.7.9 shows the time evolution of the reactive fluid temperature profiles across the

channel for the fixed set of parameters. The temperature first decreases, reaches a

minimum in the central region of the channel and then increases.
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Fig.7.9: Temperature profiles across the channel with increasing time when

M2 = 5, m = 0.1, Re = 1, Pr = 0.72, Ec = 0.1, δ = 0.1, λ = 0.1 and ε = 0.1

Fig.7.10 shows that the fluid temperature θ rises with the squared-Hartmann num-
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ber M2 for both kinds of motion of the upper plate. This may be explained as the

effect of the internal heating generation due to the Joule dissipation.
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Fig.7.10: Temperature profiles for different M2 when Re = 1, Pr = 0.72,

m = 0.1, Ec = 0.1, λ = 0.1, δ = 0.1, τ = 0.1 and ε = 0.1
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Fig.7.11: Temperature profiles for different m when M2 = 5, Pr = 0.72,

Re = 1, Ec = 0.1, δ = 0.1, λ = 0.1, τ = 0.1 and ε = 0.1

Fig.7.11 reveals that the fluid temperature θ decreases with increase in the Hall

parameter m. Fig.7.12 shows that the fluid temperature θ increases with the suc-

tion/injection parameter Re. This is because the reactive fluid is sucked from the

channel.
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Fig.7.12: Temperature profiles for different Re when M2 = 5, Pr = 0.72,

m = 0.1, Ec = 0.1, λ = 0.1, δ = 0.1, τ = 0.1 and ε = 0.1
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Fig.7.13: Temperature profiles for different δ when M2 = 5, Pr = 0.72,

m = 0.1, Ec = 0.1, Re = 1, λ = 0.1, τ = 0.1 and ε = 0.1

Fig.7.13 shows that θ decreases with increase in the variable conductivity parameter δ.

As δ increases, the viscous heating effect decreases.

7.3.5 Parameter effects on the rate of heat transfer

The numerical results for the rate of heat transfer −θ′(1, τ) at the upper plate η = 1

for several values of the suction/injection Reynolds number Re and the thermal con-



168 Chapter 7

ductivity variation parameter δ are presented in Figs.7.14 and 7.15. These figures show

that −θ′(1, τ) decreases with increase in either Re or δ for both cases of motion. As δ

increases, the thermal conductivity of the fluid is enhanced and hence, heat can diffuse

from the moving plate faster. As a result, the rate of heat transfer at the moving plate

decreases.
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Fig.7.14: Rate of heat transfer θ′(1, τ) for different Re when Ec = 0.1,

m = 0.1, Pr = 0.72, M2 = 5, δ = 0.1, λ = 0.1 and ε = 0.1
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Fig.7.15: Rate of heat transfer θ′(1, τ) for different δ when Re = 1,

m = 0.1, Pr = 0.72, M2 = 5, Ec = 0.1, λ = 0.1 and ε = 0.1
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7.4 Conclusion

We have examined the influences of Hall currents on an unsteady hydromagnetic flow

and heat transfer of a reactive viscous incompressible electrically conducting fluid be-

tween two infinitely long horizontal parallel porous plates in the presence of a uniform

transverse magnetic field when one of the plate is set into impulsive/uniformly accel-

erated motion under the Arrhenius reaction rate. The unified analytical expressions

for the velocity field and shear stresses have been derived in a closed form, using the

Laplace transform technique. The energy equation is solved numerically, using Mat-

lab. Based on the graphical presentations, the following conclusions can be summarized:

• The velocity of a reactive viscous fluid in the channel is significantly modified by

the combined effects of the magnetic field and Hall currents.

• The primary velocity is enhanced while the secondary velocity decreases due to

uniform suction/injection.

• The secondary velocity of a reactive viscous fluid increases with time.

• The temperature of the reactive viscous fluid in the channel is reduced with

increase in the Hall parameter or the variable thermal conductivity parameter,

while it increases with the squared-Hartmann number or suction/injection pa-

rameter.

• The shear stresses at the channel plates increase with Hall currents while they

are reduced with increasing squared-Hartmann number or suction/injection pa-

rameter.

• The rate of heat transfer at the channel plates is reduced due to increase in either

variable thermal conductivity parameter or suction/injection parameter.
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