
Chapter 6

Outlining impact of Hall currents

on unsteady magneto-convection

in a moving channel with

Cogley-Vincent-Gilles heat flux

model

6.1 Introduction

Magnetohydrodynamics (MHD) has emerged as a vibrant area of advanced engineering

and applied mechanics. In 1942, Alfv́en [4] discovered the electromagnet-hydrodynamics

waves which open a vast area of interest for scientists and researchers. This ground-

breaking work of Alfv́en gains a lot of significance because it has many applications

in every subfield of science specifically in geophysics, astrophysics, electrical engineer-

ing, mechanical engineering and aerospace engineering. The magnetohydrodynamic

flow and heat transfer has attracted the attention of engineers, scientists, physicist

and mathematicians in recent past owing to its cardinal significance in engineering and

industrial applications such as MHD pumps, MHD power generators, MHD sensors,

MHD flow meter, aerodynamic heating, electric transformers, electrostatic precipita-

tion polymer technology, petroleum production, cooling of a metallic plate in a cooling

bath, micro-mixing of physiological samples, biological transportation and drug de-

livery. MHD pumps are already in use in chemical energy technology for pumping
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electrically conducting fluids at some of the atomic energy centers. An MHD generator

is used to extract a portion of the aerodynamic heating energy from the inlet and an

MHD accelerator is used to reintroduce this power as kinetic energy to the exhaust

stream. The movement of an electrically conducting fluid in a magnetic filed is one of

the main features of magnetohydrodynamics. MHD in the present form is due to pio-

neer contribution of several distinguished authors like Cowling [7], Shercliff [11], Ferraro

and Plumpton [10], Gupta and Gupta [96], Datta and Jana [98], and Crammer and Pai

[346]. Due to the varied range of applications in engineering and the universe, magneto-

hydrodynamic convection in channel has become significant. The radiative convective

flows in channel and annulus under the effect of magnetic field are frequently encoun-

tered in many scientific and environmental processes such as astrophysical flows, water

evaporation from open reservoirs, heating and cooling of chambers and solar power

technology. The MHD flow and heat transfer by simultaneous thermal radiation and

convection has applications in numerous technological problems including combustion,

furnace design, nuclear reactor safety, fluidized bed heat exchanger, fire spreads, solar

fans, solar collectors, manufacture of ceramics and glassware and smelting, turbid wa-

ter bodies, photochemical reactors and many others. The free convection in channels

has received attention among researchers in the last few decades due to its widespread

importance in engineering applications like cooling of electronic equipment, design of

passive solar systems for energy conversion, design of heat exchangers, human comfort

in buildings, thermal regulation processes and many more. MHD natural convection

flow of different fluids under different geometrical conditions in physical sense has been

studied widely in the literature [347-353]. Jha et al. [109] have ascertained the fully

developed natural convective flow of conducting fluid in a vertical microchannel under

the influence of magnetic field. They have been reported that the increase in Hartmann

number is responsible for reduction in the volume flow rate. VeeraKrishna and Reddy

[354] have presented an unsteady MHD convective flow of second grade fluid through

a channel filled with a porous medium in a rotating frame.

In partially ionized gases or fluids as such as electrolysis, salt water and solar wind,

the phenomenon of Hall effects occurs when the intensity of the applied magnetic field is

very strong or when the cyclotron frequency is high [355]. The current induced in fluid

is usually carried mainly by electrons which undergo successive collisions with other

charged or neutral particles and are usually more mobile than ions. As a result of these

gyration and drift of charged particles, the conductivity parallel to the electric field is

reduced and the current is induced in the direction normal to both electric and magnetic

fields. This phenomenon generates an isotropic conductivity which is known as the Hall
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current. The occurance of Hall current demands the modification of Ohm’s law, also

the consequences of this phenomenon enhance the order of flow goverened differential

equations. The dimensionless product ωeτe, typically called the Hall parameter, is an

important characteristic number in the MHD design where ωe is the electron cyclotron

frequency and τe is the electron collision mean free time. On the microscopic scale, the

Hall parameter be a sign of the average angular travel of electrons between collisions

while on the macroscopic scale, the value of ωeτe signifies the relative importance of the

Hall field and the Hall current. Hall currents significantly modify the flow dynamics

in many cosmological objects such as dense molecular clouds and formation of white

dwarfs. The importance of Hall current in electrically conducting fluid flows under

the strong magnetic field has been emphasized by Lighthill [356]. Hall current has

important engineering applications, such as Hall generators, Hall sensors, Hall probes,

turbine, space missions and magnetic reconnection at the Earth’s magnetopause [357].

Although there are many studies on MHD natural convective flow of an electrically

conducting fluid in channels, there are only a few studies regarding MHD natural

convection flow of an electrically conducting fluid in channels, annulus, microchannel

and annular microchannel subject to a uniform strong magnetic field with Hall effects.

Some authors have carried out a number of studies on MHD natural convection covering

several aspects [358-368]. Pop et al. [369] have scrutinized the effect of Hall currents

on free and forced convective flow in a rotating channel under the influence of an

inclined magnetic field. Guria and Jana [68] have explored the Hall effects on the

combined free and forced convective flow through a rotating channel in the presence

of a uniform transverse magnetic field under general wall conditions. MHD convective

flow in a rotating channel with Hall effects has been presented by Katagiri et al. [370].

Singh and Pathak [73] have inspected the effects of rotation and Hall currents on

mixed convective MHD flow in a vertical channel filled with a porous medium. The

MHD free convective flow in a vertical channel with an oscillatory wall temperature

considering Hall currents has been analyzed by Guchhait et al. [134]. Zhang and

Chen [371] have examined the Hall effects on natural convective MHD flow in a cavity.

Das and Jana [107] have reported the Hall effects on unsteady free convection in a

heated vertical channel. Guchhait et al. [84] have analyzed the Hall effects on an

unsteady hydromagnetic free convective flow of a viscous incompressible electrically

conducting fluid in the presence of an inclined magnetic field. An oscillatory unsteady

MHD convective flow in a vertical channel filled with porous medium in the presence

of Hall and thermal radiation effects have been studied by Das et al. [139]. Seth

et al. [372] have explained combined free and forced convection Couette-Hartmann
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flow of a viscous, incompressible and electrically conducting fluid in rotating channel

with arbitrary conducting walls in the presence of Hall current. Jha et al. [114] have

examined the Hall effects on the steady fully developed magnetohydrodynamic natural

convective flow in a vertical microchannel with asymmetric heating. VeeraKrishna et

al. [373] have inspected the effects of Hall currents on unsteady MHD oscillatory free

convective flow of second grade fluid in vertical channel through porous medium.

In this chapter, our main concern is to discourse the impact of Hall current effects

on the MHD convective flow of a viscous incompressible electrically conducting fluid in

a moving vertical channel along with Cogley-Vincent-Gilles heat flux theory. The heat

due to viscous and Joule dissipations and the induced magnetic field is assumed to be ne-

glected. The magnetic Reynolds number is assumed very small for the partially-ionized

fluid so that magnetic induction effects can be ignored [355]. The relative motion of the

charged particles in the fluid can occur and the electron-atom collision frequency is as-

sumed to be high enough for Hall currents to be significant. An electric current density

is required to represent the relative motion of charged particles. The momentum and

energy equations are solved by the Laplace transform technique. Analytical closed form

solutions are obtained. In order to obtain clear insight of physical phenomenon in the

channel, the interested quantities viz. velocity and temperature profiles, shear stresses,

rate of heat transfer for different pertinent parameters are plotted graphically with the

help of MATLAB software and discussed under different intricate physical parameters.

The results obtained in this chapter are consistent with the physical situation of the

problem.

6.2 Mathematical model

Consider the unsteady flow and heat transfer of a viscous incompressible electrically

conducting fluid between two infinite vertical parallel plates separated by a distance h,

which is small compared to the characteristic lengths of the channel walls. A Cartesian

co-ordinates system with the x-axis along left wall of the channel vertically upward

direction, y-axis normal to the channel walls and z-axis perpendicular to xy-plane is

introduced (see Fig.6.1). Initially, at time t ≤ 0, both the fluid and plates are assumed

to be at rest with a constant temperature Th. At time t > 0, the right wall at y = h

starts to move with a velocity U(t) in its own plane and the temperature of the moving

wall is instantaneously raised or lowered to Th and that is maintained for all time,

t being the time, while the left wall at y = 0 is kept fixed and the temperature is

assumed to be of constant value T0. A uniform strong magnetic field of strength B0



6.2. Mathematical model 119

is imposed parallel to the y-axis. As the channel walls are of infinite extent in the x

and z-directions and electrically non-conducting, all physical quantities are function of

y and t only. The effect of Hall current gives rise to a force in the z-direction, which

induces a cross flow in that direction and hence the flow becomes two dimensional. To

simplify the analysis, we assume that there is no variation of flow quantities in the

z-direction which is valid if the plates would be of infinite width in this direction. To

simplify the analysis, it is assumed that the Joule heating and viscous dissipation are

neglected in this work. Further, the fluid is assumed to be isotropic and homogeneous

and has the scalar constant viscosity and electric conductivity.
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(Magnetic field)

U(t)
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Fixed wall

Th

T0

g (gravitational field)

Fig.6.1 : Physical configuration

In view of above assumptions, the momentum and energy equations which govern

the free convective flow of a viscous incompressible electrically conducting fluid in a

vertical channel on taking thermal radiation into account under usual Boussinesq’s

approximation are as follows [84]

∂u

∂t
= ν

∂2u

∂y2
+ gβ(T − Th)−

B0

ρ
jz, (6.1)

∂w

∂t
= ν

∂2w

∂y2
+
B0

ρ
jx, (6.2)

ρcp
∂T

∂t
= k

∂2T

∂y2
− ∂qr
∂y

, (6.3)

where u and w are the velocity components in the x and z-direction, respectively, jx and

jz are components of current density in the x and z-direction, respectively, T the fluid
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temperature, t the time, g the gravitational acceleration, β the coefficient of thermal

expansion, ρ the fluid density, ν the kinematic viscosity, k the thermal conductivity, cp

the specific heat at constant pressure, qr the radiative heat flux in the y-direction and

the term ∂qr
∂y represents the change in the radiative heat flux with distance normal to

the channel.

The appropriate initial and boundary conditions for the flow in the moving channel

are prescribed as follows [350]

t ≤ 0 : u = w = 0, T = Th for all 0 ≤ y ≤ h,

t > 0 : u = w = 0, T = T0 at y = 0,

t > 0 : u = U(t), w = 0, T = Th at y = h. (6.4)

The generalized Ohm’s law with Hall current effects takes the following form (Cowl-

ing [7])

~j +
ωeτe
B0

(
~j × ~B

)
= σ( ~E + ~q × ~B), (6.5)

where ~q = (u, 0, w) is the velocity vector, ~j = (jx, jy, jz) the currents density vector,
~B = (Bx, By, Bz) the magnetic field vector, ~E = (Ex, Ey, Ez) the electric field vector,

σ the electrical conductivity, ωe the cyclotron frequency and τe the collision time of

electron.

In writing (6.5), the ion-slip and the thermoelectric effects as well as the electron

pressure gradient are neglected which is justified for partially ionized gas. The right

hand side within the bracket is the electric field in the moving frame. The first term

on the left hand side comes from the electron drag on the ions. The second term is

the Hall term and has to do with the idea that electrons and ions can decouple and

move separately. In case of electrically conducting fluid, the flow and heat transfer are

induced by an imposed magnetic field. An electromotive force (or emf) is produced in

the fluid flowing across the transverse magnetic field. The resultant effect of current

and magnetic field produces a force, resisting the fluid motion. The fluid velocity also

affects the magnetic field by producing an induced magnetic field which perturbs the

original field. The Hall current effect is the direct result of the Lorentz force ~j × ~B.

The Lorentz force is that which governs the behavior of charged particles in a magnetic

field. It is that force which accounts for the deflection of electron beams in magnetically

deflected cathode ray tubes and the rotation of electric motor armatures. Further, it is

assumed that ωe τe ∼ O(1) and ωi τi ≪ 1, where ωe, ωi are the cyclotron frequency of

electrons and ions and τe, τi are the collision time for electrons and ions, respectively.
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The solenoidal relation ∇ · ~B = 0 for the magnetic field gives By = B0 = constant

everywhere in the fluid i.e. ~B ≡ (0, B0, 0). The equation of conservation of the charge

∇ · ~j = 0 gives jy = constant, where (jx, jy, jz) are the components of the currents

density ~j. This constant is zero since jy = 0 at the plates which are electrically non-

conducting. Thus jy = 0 everywhere in the flow field. So ~j ≡ (jx, 0, jz). Since the

induced magnetic field is neglected, the Maxwell’s equation ∇ × ~E = −∂ ~B
∂t becomes

∇ × ~E = 0 which gives ∂Ez

∂y = 0 and ∂Ex

∂y = 0. This implies that Ex = constant and

Ez = constant everywhere in the flow.

Assuming Ex = 0 and Ez = 0, the equation (6.5) yields

jx −mjz = −σwB0, (6.6)

jz +mjx = σuB0, (6.7)

where m = ωeτe is the Hall parameter. The effect of Hall current gives rise to a force in

the z-direction, which induces a cross flow in that direction and hence the flow becomes

two dimensional. To simplify the problem, we assume that there is no variation of flow

quantities in z-direction. This assumption is considered to be valid if the surface be of

infinite extent in the z-direction.

On solving equations (6.6) and (6.7), we have

jx =
σB0

1 +m2
(mu− w) , (6.8)

jz =
σB0

1 +m2
(mw + u) . (6.9)

On the use of (6.8) and (6.9), equations (6.1) and (6.2) reduce to

∂u

∂t
= ν

∂2u

∂y2
− σB2

0

ρ(1 +m2)
(mw + u) + gβ (T − Th) , (6.10)

∂w

∂t
= ν

∂2w

∂y2
− σB2

0

ρ(1 +m2)
(w −mu) . (6.11)

The flow described by equations (6.10) and (6.11) are the general representation of the

velocity distribution for the flow through a vertical channel of any conducting medium

due to the movement of the right wall in the presence of free convective currents.

The optically thin assumption is worth noting since most investigations have utilized

it when dealing with gases. Following Cogley et al. [192], in the optically thin limit for

a non-grey gas near equilibrium situation, the following relation holds

∂qr
∂y

= 4(T − Th)

∞∫

0

Kλw

[
∂eλp

(T )

∂T

]

w

dλ, (6.12)
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where Kλw
is the frequency-dependent absorption coefficient at the wall, λ is the wave

length, eλp
(T ) is the Planck’s function and subscript w denotes that all quantities have

been evaluated at the reference temperature Th which is the temperature of the right

wall of the channel at time t ≤ 0. Thus, our study is limited to small difference of plate

temperature to the fluid temperature.

Substituting (6.12) in (6.3), we obtain

ρcp
∂T

∂t
= k

∂2T

∂y2
− 4 (T − Th) I, (6.13)

where

I =

∞∫

0

Kλw

[
∂eλp

(T )

∂T

]

w

dλ. (6.14)

Introducing the non-dimensional variables

η =
y

h
, u1 =

u

U0
, w1 =

w

U0
, θ =

T − Th
T0 − Th

, τ =
νt

h2
, U(t) = U0f(τ) (6.15)

equations (6.10), (6.11) and (6.13) become

∂u1
∂τ

=
∂2u1
∂η2

− M2

(1 +m2)
(u1 +mw1) +Gr θ, (6.16)

∂w1

∂τ
=

∂2w1

∂η2
− M2

(1 +m2)
(w1 −mu1) , (6.17)

Pr
∂θ

∂τ
=

∂2θ

∂η2
−N θ, (6.18)

where M2 =
σB2

0
h2

νρ is the squared-Hartmann number which may be interpreted as

the ratio of induction drag to viscous drag, Gr = gβ(T0−Th)h
2

νU0
the Grashof number

which signifies the relative strength of the thermal buoyancy force to the viscous force,

Pr =
νρcp
k the Prandtl number which defines the relative effectiveness of momentum

and energy transport by diffusion i.e. the ratio of momentum to thermal diffusivity in

the ionized fluid, N = 4Ih2

k the radiation parameter, f(τ) a known function and U0

being a constant.

It is convenient to combine equations (6.16) and (6.17) into a single equation. We

multiply equation (6.17) by i and add the resultant to equation (6.16) to obtain

∂q

∂τ
=

∂2q

∂η2
− a q +Gr θ, (6.19)

where q(= u1+i w1) is the fluid velocity in the complex form, a =M2(1−im)/(1+m2)

and i =
√
−1.
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The initial and boundary conditions for q(η) and θ(η) can be put in the following

form

τ ≤ 0 : q = 0, θ = 0 for all η,

τ > 0 : q = 0, θ = 1 at η = 0,

τ > 0 : q = f(τ), θ = 0 at η = 1. (6.20)

The exact solution of (6.18) and (6.19) with initial and boundary conditions (6.20) can

be obtained by using the Laplace transform technique. On taking Laplace transform

of (6.18) and (6.19), we have

d2θ̄

dη2
− (sPr +N) θ̄ = 0, (6.21)

d2q̄

dη2
− (s+ a) q̄ +Gr θ̄ = 0, (6.22)

where

q̄(η, s) =

∞∫

0

q(η, τ) e−sτ dτ, θ̄(η, s) =

∞∫

0

θ(η, τ) e−sτ dτ, (6.23)

and s(> 0) is the Laplace transform variable.

The corresponding boundary conditions are

q̄(0, s) = 0, θ̄(0, s) =
1

s
, q̄(1, s) = f̄(s), θ̄(1, s) = 0, (6.24)

where f̄(s) is the Laplace transform of the function f(τ).

The solution of equations (6.21) and (6.22) subject to the boundary conditions

(6.24) are

θ̄(η, s) =
1

s

sinh
√
sPr +N(1− η)

sinh
√
sPr +N

, (6.25)

q̄(η, s) = f̄(s)
sinh

√
s+ a η

sinh
√
s+ a

+
Gr

(Pr − 1)

1

s(s+ α)

[
sinh

√
s+ a(1− η)

sinh
√
s+ a

− sinh
√
sPr +N(1− η)

sinh
√
sPr +N

]
, (6.26)

where α = N−a
Pr−1 .
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We obtain the temperature distribution θ(η, τ) on taking the Laplace inversion of

(6.25) as

θ(η, τ) =





sinh
√
N(1−η)

sinh
√
N

− 2π
∞∑
n=1

e
−(N+n2π2) τ

Pr

(N+n2π2) n sinnπη for Pr 6= 1

sinh
√
N(1−η)

sinh
√
N

− 2π
∞∑
n=1

e
−(N+n2π2)τ
(N+n2π2) n sinnπη for Pr = 1.

(6.27)

In this paper, we propose to investigate the following cases corresponding to the

type of motions of the right wall of the channel.

6.2.1 Impulsive motion of right wall

For impulsive motion of the right wall of the channel, f(τ) = 1. Then f̄(s) = 1
s . The

inverse Laplace transform of the equation (6.26) gives the expression of the complex

fluid velocity q(η, τ) as

q(η, τ) =





sinh
√
a η

sinh
√
a

+ Gr
(Pr−1)α

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+2
∞∑
n=1

nπ

[
(−1)n e

−(a+n2π2)τ
(a+n2π2) + Gr

Pr−1

{
e
−(a+n2π2)τ

(a+n2π2)(a−α+n2π2)

− e
−(N+n2π2) τ

Pr

(N+n2π2){ 1

Pr
(N+n2π2)−α}

}]
sinnπη for Pr 6= 1

sinh
√
a η

sinh
√
a

+ Gr
(N−a)

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+2
∞∑
n=1

nπ

[
{(−1)n − Gr

N−a} e
−(a+n2π2)τ
(a+n2π2)

+ Gr
N−a

e
−(N+n2π2)τ
(N+n2π2)

]
sinnπη for Pr = 1.

(6.28)

Equation (6.28) represents the unified expression for complex velocity of an electri-

cally conducting fluid due to the impulsive motion of the right wall of the channel in

the presence of strong magnetic filed with Hall current effects. Separating into a real

and imaginary parts, one can easily obtain the non-dimensional velocity components

u1 and w1 from (6.28).

The expression for the steady state complex velocity qs is obtained by letting τ → ∞
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in (6.28) as

qs(η) =





sinh
√
a η

sinh
√
a

+ Gr
(Pr−1)α

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}
for Pr 6= 1

sinh
√
a η

sinh
√
a

+ Gr
(N−a)

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}
for Pr = 1.

(6.29)

6.2.2 Accelerated motion of right wall

In case of accelerated motion of the right wall of the channel, f(τ) = τ . Then f̄(s) = 1
s2 .

On taking inverse Laplace transform of equation (6.26), we obtain the complex velocity

q(η, τ) and expressed as

q(η, τ) =





sinh
√
a η

sinh
√
a
τ + Gr

(Pr−1)α

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+ 1
2
√
a sinh

√
a
(η cosh

√
a η − coth

√
a sinh

√
a η)

−2
∞∑
n=1

nπ

[
(−1)n e

−(a+n2π2)τ

(a+n2π2)2
− Gr

Pr−1

{
e
−(a+n2π2)τ

(a+n2π2)(a−α+n2π2)

− Pr e
−(N+n2π2) τ

Pr

(N+n2π2){(N+n2π2)−αPr}

}]
sinnπη for Pr 6= 1

sinh
√
a η

sinh
√
a
τ + Gr

(N−a)

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+ 1
2
√
a sinh

√
a
(η cosh

√
a η − coth

√
a sinh

√
a η)

−2
∞∑
n=1

nπ

[
(−1)n e

−(a+n2π2)τ

(a+n2π)2

+

{
e
−(a+n2π2)τ
(a+n2π2) + Gr

N−a
e
−(N+n2π2)τ
(N+n2π2)

}]
sinnπη for Pr = 1.

(6.30)

Equation (6.30) gives the unified expression for complex velocity of an electrically

conducting fluid due to the accelerated motion of the right wall of the channel in the

presence of strong magnetic filed with Hall effects. Separating into a real and imaginary

parts one can easily obtain the non-dimensional velocity components u1 and w1 from

(6.30).
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For large time, i.e. τ ≫ 1, the equation (6.30) becomes

q̃(η) =





sinh
√
a η

sinh
√
a
τ + Gr

(Pr−1)α

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+ 1
2
√
a sinh

√
a
(η cosh

√
a η − coth

√
a sinh

√
a η) for Pr 6= 1

sinh
√
a η

sinh
√
a
τ + Gr

(N−a)

{
sinh

√
a(1−η)

sinh
√
a

− sinh
√
N(1−η)

sinh
√
N

}

+ 1
2
√
a sinh

√
a
(η cosh

√
a η − coth

√
a sinh

√
a η) for Pr = 1.

(6.31)

6.3 Results and discussion

The present chapter is a speculative investigation of the modelled problem addressing

Hall current effects on MHD convective flow in a moving channel with Cogley-Vincent-

Gilles heat flux theory. This section deals with the effects of various pertinent pa-

rameters, viz. squared-Hartmann number M2, Hall parameter m, radiation parameter

N , Grashof number Gr, Prandtl number Pr and time τ on the non-dimensional fluid

velocity components, temperature profiles, shear stresses and rate of heat transfer. For

this purpose, computations have been performed for the MHD flow with M2 = 10,

m = 0.5, Gr = 5, N = 2, Pr = 0.71, τ = 0.5. For the whole investigation, these values

are kept constant except the varying parameter which is presented in the respective fig-

ure. Physically, this data applies to electrically conducting electrolytic(water) solution,

encountered in geophysical flows. It is noted that solutions given by (6.27), (6.28) and

(6.30) satisfy all the imposed boundary conditions which provide a useful mathematical

check of the results of the present study. The validity of calculated solutions of this

study is ensured.

6.3.1 Primary and secondary velocity profiles

Figs.6.2(a) and 6.2(b) are sketched to expose the impact of squared-Hartmann number

M2 on the velocity components. The primary velocity significantly reduces for both

cases of the impulsive and accelerated motions when M2 is intensified[Fig.6.2(a)]. In
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Fig.6.2(a): Primary velocity profiles u1 varying M2 when N = 2,

m = 0.5, Gr = 5, Pr = 0.71 and τ = 0.5
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Fig.6.2(b): Secondary velocity profiles w1 varying M2 when N = 2,

m = 0.5, Gr = 5, Pr = 0.71 and τ = 0.5

Fig.6.2(b), the secondary velocity is observed to decrease with increasing M2 in the

vicinity of the left(fixed) wall of the channel and increases near the right(moving) wall

of the channel for both type of motions. That is the primary or secondary fluid mo-

tion is significantly influenced due to application of transverse magnetic field. This

is due to the related fact that the strength of strong magnetic field is responsible to

generate the Lorentz force(an opposing force) in the flow field which opposes the fluid

transport due to increasing Hartmann number. The secondary velocity is observed to

be skewed towards the moving wall with gaining strength of magnetic field. The effect of
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Fig.6.2(c): Primary velocity profiles u1 varying m when N = 2,

M2 = 10, Gr = 5, Pr = 0.71 and τ = 0.5
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Fig.6.2(d): Secondary velocity profiles w1 varying m when N = 2,

M2 = 10, Gr = 5, Pr = 0.71 and τ = 0.5

Hall parameter m on the velocity components is depicted in Figs.6.2(c) and 6.2(d).

As Hall parameter m increases, both the fluid velocity components enhance for both

prescribed motions. Because increasing values of Hall parameter correspond to reduce

in damping magnetic force and as a result motion of fluid is accelerated. This is a new

phenomenon which appears as a result of imposing Hall current in the flow distribu-

tion. With increasing Hall parameter, the peak of secondary velocity is displaced closer

to the right wall of the channel. This does not occur for the primary velocity. Figs.6.2(e)



6.3. Results and discussion 129

Impulsive motion

Accelerated motion

N = 0.5, 1.0, 2.0, 3.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Η

u
1

Fig.6.2(e): Primary velocity profiles u1 varying N when m = 0.5,

M2 = 10, Gr = 5, Pr = 0.71 and τ = 0.5
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Fig.6.2(f): Secondary velocity profiles w1 varying N when m = 0.5,

M2 = 10, Gr = 5, Pr = 0.71 and τ = 0.5

and 6.2(f) expose the radiation parameter consequences on velocity components for

both motions. These graphs explicate that both the velocity components are decreasing

in nature against radiation parameter N . The presence of thermal radiation therefore

clearly inhibits the primary as well as secondary flows. The thermal radiation has a

significant effect on momentum in the flow system and provides a good mechanism for

flow control. Figs.6.2(g) and 6.2(h) are chalked out to illustrate the influence of Grashof
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Fig.6.2(g): Primary velocity profiles u1 varying Gr when N = 2,

m = 0.5, M2 = 10, Pr = 0.71 and τ = 0.5
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Fig.6.2(h): Secondary velocity profiles w1 varying Gr when N = 2,

m = 0.5, M2 = 10, Pr = 0.71 and τ = 0.5

number Gr on the velocity components. As demonstrated in these figures, both the

velocity components are considerably boosted up due to a rise in Grashof number Gr

for both type of motions of the right wall. The Grashof number signifies the ratio of

buoyant force to viscous force and Gr > 0 leads to the situation when buoyant force

is dominant and positive and flow is assisted by this force while Gr < 0 is the case

when buoyant force is negative and opposes the flow. Both the primary and secondary

velocities are negative for negative values of Grashof number, indicating that backflow

occurs near the left wall of the channel. The magnitude of backflow is larger in case

of accelerated motion. The maximum of the secondary velocity profiles shifts toward the
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Fig.6.2(i): Primary velocity profiles u1 varying Pr when N = 2,

m = 0.5, M2 = 10, Gr = 5 and τ = 0.5

pr = 0.71, 2.0, 4.0, 10.0
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Fig.6.2(j): Secondary velocity profiles w1 varying Pr when N = 2,

m = 0.5, M2 = 10, Gr = 5 and τ = 0.5

right half of the channel due to the moving wall which is more hotter than the sta-

tionary wall. Figs.6.2(i) and 6.2(j) reflect that the velocity components are observed to

decrease with increasing Prandtl number Pr for both cases of impulsive as well as ac-

celerated motions of the right wall of the channel. Physically, this is quite true because

an increase in the Prandtl number is due to increase in the viscosity of the fluid which

makes the fluid thick and hence causes a decrease in the fluid velocity components. From
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Fig.6.2(k): Primary velocity profiles u1 varying τ when N = 2,

m = 0.5, M2 = 10, Gr = 5 and Pr = 0.71
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Fig.6.2(l): Secondary velocity profiles w1 varying τ when N = 2,

m = 0.5, M2 = 10, Gr = 5 and Pr = 0.71

Figs.6.2(k) and 6.2(l), it is illustrated that the velocity components substantially in-

crease when time τ progresses for both the impulsive as well as accelerated motions

of the right wall of the channel. Fig.6.2 also focuses on the comparative analysis of

impulsive motion and accelerated motion of the moving wall of the channel by varying

flow parameters. The graphs explicate that both the velocity components for impulsive

motion are always greater than the accelerated motion of the right wall of the channel.
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Fig.6.3 displays the time evolution of the primary and secondary velocity profiles

across the channel for a fixed set of parameter values from the time where the fluid is

begun to flow. The primary velocity enhances from its value at the left wall to its value

at the right wall which is moving impulsively [Figs. 6.3(a) and 6.3(b)].
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Fig.6.3(a): Time evolution of u1-profiles varying η and τ for impulsive motion
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Fig.6.3(b): Time evolution of u1-profiles varying η and τ for accelerated motion
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In Figs.6.3(c) and 6.3(d), the secondary velocity is seen to increase from its pre-

scribed value at the left wall to its maximum value attained in case of accelerated start

of the moving right wall.
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Fig.6.3(c): Time evolution of w1-profiles varying η and τ for impulsive motion
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Fig.6.3(d): Time evolution of w1-profiles varying η and τ for accelerated motion
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6.3.2 Temperature profiles

Fig.6.4(a) portrays the effect of radiation parameter N on temperature profiles. The

temperature profiles decrease as N increases, because the higher values of radiation pa-

rameter increase the absorption coefficient (Kλw
) at the channel walls which therefore

reduces the divergence of radiation heat flux ∂qr
∂y leading to the reduced dissipation of

kinetic energy as thermal energy. Therefore, temperature in fluid is reduced with lesser

Joule dissipation. Thus, it is pointed out that the radiation effect induces cooling at a

N = 0.5, 1.0, 2.0, 3.0
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Fig.6.4(a): Temperature profiles varying N when Pr = 0.71 and τ = 0.5
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Fig.6.4(b): Temperature profiles varying Pr when N = 2 and τ = 0.5
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faster rate in the hydromagnetic channel flow regime. Fig.6.4(b) is aimed to shed

light on the effect of Prandtl number Pr on temperature profiles. This figure expli-

cates that Prandtl number reduces temperature substantially. This is related to the

fact that there would be a decrease in temperature with the increase of Prandtl number.
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Fig.6.4(c): Temperature profiles varying τ when N = 2 and Pr = 0.71
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Fig.6.4(d): Time evolution of temperature profiles varying η and τ

when N = 2 and Pr = 0.71
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From Fig.6.4(c), it is noticed that as time τ progresses, there is an enhancement in

temperature profiles. Fig.6.4(d) displays the time evolution of temperature profiles

across the channel for a fixed set of parameter values from the time where the fluid

is begun to flow. The temperature increases to its maximum value subject to the

boundary conditions considered.

6.3.3 Shear stresses

For impulsive motion, the non-dimensional shear stresses τx and τz due to the primary

and secondary flows at the fixed left wall of the channel (η = 0) are calculated from

(6.28) and given by

τx + i τz =
∂q

∂η
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(6.32)

For accelerated motion, the non-dimensional shear stresses τx and τz at the fixed

left wall of the channel (η = 0) due to the primary and secondary flows are computed

from (6.30) and expressed as

τx + i τz =
∂q

∂η

)

η=0
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(6.33)

The numerical values of the non-dimensional shear stresses τx and τz at the left wall

of the channel (η = 0) due to the primary and secondary flows are presented in Fig.6.5

for several values of M2, m, N , Gr, Pr and time τ . The impact of squared-Hartmann

number M2 on the shear stresses is disseminated in Figs.6.5(a) and 6.5(b). As M2

increases, both the shear stresses τx and τz are reduced for both cases of impulsive and

accelerated motions.
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Fig.6.5(a): Shear stress τx varying M2 when N = 2, Gr = 5, Pr = 0.71 and τ = 0.5
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Fig.6.5(b): Shear stress τz varying M2 when N = 2, Gr = 5, Pr = 0.71 and τ = 0.5
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Fig.6.5(c): Shear stress τx varying N when Gr = 5, Pr = 0.71, M2 = 10 and τ = 0.5

Figs.6.5(c) and 6.5(d) show that radiation parameter N has a tendency to reduce

the shear stresses τx and τz at the wall η = 0 for both cases of the impulsive as well as

accelerated motions of the right wall of the channel.
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Fig.6.5(d): Shear stress τz varying N when Gr = 5, Pr = 0.71, M2 = 10 and τ = 0.5
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Fig.6.5(e): Shear stress τx varying Gr when N = 2, Pr = 0.71, M2 = 10 and τ = 0.5

It is illustrated from Figs.6.5(e) and 6.5(f) that the shear stresses τx and τz boost

up with increasing Gr for both the impulsive as well as accelerated motions of the wall

η = 1.
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Fig.6.5(f): Shear stress τz varying Gr when N = 2, Pr = 0.71, M2 = 10 and τ = 0.5
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Fig.6.5(g): Shear stress τx varying Pr when N = 2, Gr = 5,M2 = 10 and τ = 0.5

Figs.6.5(g) and 6.5(h) show that the shear stresses τx and τz reduce for increasing

values of Pr for both prescribe motions of the right wall. Physically, it is possible

because fluids with Prandtl number move slowly and hence there is more friction at

the channel walls.
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Fig.6.5(h): Shear stress τz varying Pr when N = 2, Gr = 5,M2 = 10 and τ = 0.5
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Fig.6.5(i): Shear stress τx varying τ when N = 2, Gr = 5, Pr = 0.71 and M2 = 10

The time parameter τ has increasing affect on both shear stresses τx and τz for

both motions [Figs.6.5(i) and 6.5(j)]. Further, it is observed from Fig.6.5 that the

shear stresses at the left wall (η = 0) of the channel, in case of impulsive start of mov-

ing wall is greater than accelerated start of the right wall of the channel.
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Fig.6.5(j): Shear stress τz varying τ when N = 2, Gr = 5, Pr = 0.71 and M2 = 10

6.3.4 Rate of heat transfer

For engineering point of view, the rate of heat transfer is a quantity of foremost interest.

The expression of the rate of heat transfer governing the heat transfer characteristics

at the channel walls (η = 0, 1) are calculated from (6.27) and given by
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The numerical values of the rate of heat transfer −θ′(0) and −θ′(1) are plotted in

Fig.6.6 for several values of physical parameters, viz. N , Pr and τ . Fig.6.6(a) portrays

the variation of the rate of heat transfer at the channel walls with respect to Prandtl

number Pr. The rate of heat transfer −θ′(0) at the left wall of the channel(η = 0)

is enhanced and −θ′(1) at the right moving wall of the channel(η = 1) is reduced by

increasing Pr. Prandtl number signifies the ratio of momentum diffusivity to thermal

diffusivity. Fluids with lower Prandtl number will possess higher thermal conductivi-

ties so that heat can diffuse from the left wall (η = 0) faster than for higher Pr fluids.
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Hence, Prandtl number can be used to increase the rate of cooling in conducting flows.
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Fig.6.6(a): Rate of heat transfer varying Pr when τ = 0.5
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Fig.6.6(b): Rate of heat transfer varying τ when Pr = 0.71

In Fig.6.6(b), the rate of heat transfer −θ′(0) reduces whereas the rate of heat transfer

−θ′(1) enhances as time τ progresses. The rate of heat transfer at both channel walls

is negative for all parameter, which means that the heat is always transferred from the

channel walls to fluid.
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6.4 Conclusion

In the present study, an analytical investigation has been presented to expose the im-

pact of Hall current effects on unsteady MHD convective flow and heat transfer of a

viscous incompressible electrically conducting fluid in a moving vertical channel adopt-

ing Cogley-Vincent-Gilles heat flux model. Employing Laplace transform technique,

the governing equations are solved. Closed form expressions for the fluid velocity com-

ponents, temperature, shear stresses and the rate of heat transfer at the channel walls

are obtained. Emphasis is given on how flow dynamics are changed due to the effect

of the strong magnetic field along with Hall currents. The key findings of the present

study are highlighted below:

• The velocity components are declined due to increasing values of the magnetic

field or radiation parameter.

• Increasing Hall parameter strongly accelerates the velocity components.

• The buoyancy force significantly enhances the fluid velocity components through-

out the channel.

• An enhancement in thermal radiation parameter leads to cooling of fluid.

• The wall shear stresses are significantly increased by increasing Hall parameter.

• The wall shear stresses are reduced by increasing radiation parameter.

• As time progresses there is an enhancement in the rate of heat transfer at the

moving channel walls.

• Inclusion of Hall currents exerts a profound influence on the flow characteristics.
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