
Chapter 3

Oscillatory MHD Couette flow in

a rotating system∗

3.1 Introduction

The study of fluid flow in a rotating environment has considerable bearing on

the problems of geophysical, astrophysical and fluid engineering applications. An

extensive literature exists on the flow of fluids in a rotating frame. Nanda and

Mohanty [206] have studied the hydromagnetic steady flow in a rotating channel

with constant pressure gradient. Majumder [207] has studied the effect of wall

conductances on the hydromagnetic flow in a rotating system. Datta and Jana

[62] have discussed the effect of rotation and Hall current on the hydromagnetic

flow using non-conducting walls. Jana et al. [208] have studied the MHD Couette

flow in a rotating frame of reference when the fixed plate of the channel was a

perfect conductor, the moving one was non-conducting . Nagy and Demendy [209]

have studied the hydromagnetic flow under general wall conditions. The combined

effects of Hall current and rotation on the flow structure and heat transfer in a

generalised hydromagnetic flow have been studied by Nagy and Demendy [210].

Guria et al. [211] have studied the hydromagnetic flow in a rotating channel in

the presence of inclined magnetic field. The unsteady Couette flow in a rotating

system have been studied by Guria et al. [212]. The unsteady hydromagnetic

∗Published in International Journal of Fluid Mechanics Research, 37(3)(2010),
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46 Chapter 3

Couette flow in a rotating system under boundary layer approximation has been

studied by Mazumder [23], Ganapaty [213] and Guria et al. [214]. Hall effects on

hydromagnetic rotating Couette flow has been analyzed by Das et al. [215]. Seth

et al. [216] have considered hydromagnetic oscillatory Couette flow in rotating

system with induced magnetic field. Transient hydromagnetic reactive Couette

flow and heat transfer characteristic has been described by Das et al. [217] in

a rotating frame of reference. An analysis of unsteady MHD Couette flow and

heat transfer has been made by Gupta and Jain [218] taking rotating horizontal

channel with suction/injection. Rajesh et al. [219] have derived an exact solution

of oscillatory Ekman boundary layer flow through a porous medium bounded by

two horizontal flat plates where one of the plates is at rest and the other one is

oscillating in its own plane.

The present chapter is devoted to study the hydromagnetic Couette flow

through a horizontal channel when one of the plate is oscillating about the mean

velocity and the other is held at rest in a rotating system under boundary layer

approximations. It is found that the unsteady part of the primary velocity in-

creases while that part of the secondary velocity decreases with an increase in

Hartmann number M . It is also found that phase of the shear stress due to un-

steady part of the primary flow at the plate η = 0 has always a phase lead for

2K2 < ω and a phase lag for 2K2 > ω. On the other hand, phase of the shear

stress due to the unsteady part of the secondary flow has a phase lead over the

plate oscillations.

3.2 Mathematical formulation and its solution

Consider the unsteady viscous incompressible electrically conducting fluid bounded

by two infinitely long horizontal parallel plates separated by a distance d, the

lower plate is held at rest and the upper plate is oscillating in its own plane with

a velocity U(t) about a constant mean velocity U0 in the direction of x-axis where

x-axis is taken on the lower plate in the direction of the flow. The y-axis is normal

to the plates and the z-axis perpendicular to the xy-plane(see Fig.3.1). The fluid

along with the plates are in a rigid body rotation about the y-axis with a uniform

angular velocity Ω. A uniform magnetic field of strength B0 is applied perpen-

dicular to the plates. Since the plates are infinitely long along x and z-axes, all
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physical variables, except pressure, depend on y and t only .
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Fig.3.1: Geometry of the problem

We shall assume that the induced magnetic field produced by the motion of the

conducting fluid is negligible so that ~B ≡ (0, B0, 0). In the absence of an external

electric field the effect of polarisation of the fluid is negligible.We shall also assume

that the electric field ~E = 0, Meyer [8].

The Navier-Stokes equations of motion for a conducting fluid are

∂vx
∂t

− 2Ωvy = −1

ρ

∂p

∂x
+ ν

∂2vx
∂y2

− σB2
0

ρ
vx, (3.1)

∂vy
∂t

+ 2Ωvx = −1

ρ

∂p

∂y
+ ν

∂2vy
∂y2

− σB2
0

ρ
vy, (3.2)

0 = −1

ρ

∂p

∂z
, (3.3)

where ρ, ν, Ω and p are respectively the fluid density, kinematic viscosity, angular

velocity and fluid pressure including centrifugal force.

The boundary conditions are

vx = 0 = vy at y = 0 and vx = U(t), vy = 0 at y = d. (3.4)

Under usual boundary layer approximations, equations (3.1) and (3.2) become

∂vx
∂t

− 2Ωvy =
∂U

∂t
+ ν

∂2vx
∂y2

− σB2
0

ρ
(vx − U), (3.5)

∂vy
∂t

+ 2Ω(vx − U) = ν
∂2vy
∂y2

− σB2
0

ρ
vy. (3.6)
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Introducing non-dimensional variables

η =
y

d
, u =

vx
U0

, v =
vy
U0

, U = U0f(τ), τ =
νt

d2
(3.7)

equations (3.5) and (3.6) become

∂u

∂τ
− 2K2v =

∂f

∂τ
+

∂2u

∂η2
−M2(u− f), (3.8)

∂v

∂τ
+ 2K2(u− f) =

∂2v

∂η2
−M2v, (3.9)

where M2 =
σ B2

0
d2

ρν
is the squared-Hartmann number representing the ratio of

the electromagnetic (Lorentz) force to the viscous force, K2 = Ωd2

ν
the rotation

parameter.

The boundary conditions (3.4) reduce to

u = v = 0 at η = 0 and u = f(τ), v = 0 at η = 1. (3.10)

We assume the plate velocity in the form of a Fourier series as

f(τ) = Uo +
∞∑

n=1

[Un cosnωτ + Un
∗ sinnωτ ]

= Uo +Re
∞∑

n=1

Ūn exp(inωτ), (3.11)

where Ūn = Un−iUn
∗ and ’Re’ denotes the real part. The coefficients U0, Un, Un

∗

are the dimensionless Fourier constants of the function f(τ) when expressed in its

fundamental period 2π
ω
, where ω

(
= ω∗d2

ν

)
being the dimensionless frequency of

the oscillations. These may be interpreted as dimensionless constants representing

the amplitudes of the oscillating plate velocity superposed upon the constant

mean velocity U0.

In view of (3.11), solution of the equations (3.8) and (3.9) can be written in the

following form

u = u0(η) +Re
∞∑

n=1

un(η) exp(inωτ), (3.12)

v = v0(η) +Re
∞∑

n=1

vn(η) exp(inωτ). (3.13)



3.2. Mathematical formulation and its solution 49

On the use of (3.11)-(3.13), equations (3.8) and (3.9) become

i nωun − 2K2vn = inωŪn + un
′′ −M2(un − Ūn), (3.14)

i nωvn + 2K2(un − Ūn) = vn
′′ −M2vn, (3.15)

where n = 0, 1, 2, · · ·.
The boundary conditions (3.10) become

un = vn = 0 at η = 0 and un = Ūn, vn = 0 at η = 1. (3.16)

Equations (3.14) and (3.15) subjected to the boundary conditions (3.16) can

easily be solved and the solution for the primary and secondary velocities can be

written as

u(η, τ) = u0(η) +Re
∞∑

n=1

Ūn

[
1− 1

2
{cosh(α1 + iβ1)η + cosh(α2 ± iβ2)η

− cosh(α1 + iβ1)

sinh(α1 + iβ1)
sinh(α1 + iβ1)η

− cosh(α2 ± iβ2)

sinh(α2 ± iβ2)
sinh(α2 ± iβ2)η

}]
einωτ , (3.17)

v(η, τ) = v0(η) +Re
∞∑

n=1

i

2
Ūn [cosh(α1 + iβ1)η − cosh(α2 ± iβ2)η

− cosh(α1 + iβ1)

sinh(α1 + iβ1)
sinh(α1 + iβ1)η

+
cosh(α2 ± iβ2)

sinh(α2 ± iβ2)
sinh(α2 ± iβ2)η

]
einωτ , (3.18)

where the upper sign for nω > 2K2 and the lower sign for nω < 2K2.

Further, u0(η) and v0(η) are the velocity components corresponding to the steady

uniform velocity U0 and are given by

u0 + iv0 = U0

[
1− cosh(α + iβ)η +

cosh(α + iβ)

sinh(α + iβ)
sinh(α + iβ)η

]
, (3.19)

where α, β =
1√
2

[(
M4 + 4K4

) 1

2 ±M2
] 1

2

,

α1, β1 =
1√
2

[{
M4 +

(
nω + 2K2

)2}1/2

±M2

] 1

2

,

α2, β2 =
1√
2

[{
M4 +

(
nω − 2K2

)2} 1

2 ±M2

] 1

2

. (3.20)
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We shall now discuss a few particular cases of interest:

Case-I: When nω ≫ 1, K2 ≪ 1 and M2 ≪ 1

When nω is large order of magnitude then one can expect boundary layer type

flow near the plates. For nω ≫ 1, K2 ≪ 1 and M2 ≪ 1, the velocity distribution

are given by

u = u0(η) +
∞∑

n=1

{[Un cosnωτ + Un
∗ sin nωτ ]

− 1

2

[
e−α1η [Un cos(nωτ − β1η) + Un

∗ sin(nωτ − β1η)]

+ e−α2η [Un cos(nωτ − β2η) + Un
∗ sin(nωτ − β2η)]]} , (3.21)

v = v0(η) +
1

2

∞∑

n=1

[
e−α1η [Un

∗ cos(nωτ − β1η)− Un sin(nωτ − β1η)]

− e−α2η [Un
∗ cos(nωτ − β2η)− Un sin(nωτ − β2η)]] , (3.22)

where α1,2 =
(
nω

2

) 1

2

(
1± K2

nω
+

M2

2nω

)
,

β1,2 =
(
nω

2

) 1

2

(
1± K2

nω
− M2

2nω

)
. (3.23)

Equations (3.21) and (3.22) show the existence of double-deck boundary layers

of thicknesses O
{(

nω
2

) 1

2
(
1 + K2

nω
+ M2

2nω

)}−1

and O
{(

nω
2

) 1

2
(
1− K2

nω
+ M2

2nω

)}−1

near the plate η = 0. These layers may be identified as modified Stokes-Ekman-

Hartmann layers as modified by the rotation parameter and magnetic field. It is

seen that for each mode of pulsation, i.e. for fixed n, there are two associated

layers. The thicknesses of these boundary layers decrease with the increase in n.

The boundary layers arising due to higher mode of pulsation (n > 1) are confined

inside the boundary layer due to fundamental mode of pulsation (n = 1). The

exponential terms in the above expressions damp out quickly as η increases. When

η ≥
(
nω

2

) 1

2

(
1± K2

nω
+

M2

2nω

)
,

we have, u = u0(η) +
∞∑

n=1

[Un cosnωτ + Un
∗ sinnωτ ] ,

v = v0(η). (3.24)



3.2. Mathematical formulation and its solution 51

The above equations show that for large frequency parameter nω, the fluctuating

part of the primary flow will be in phase with the plate oscillations while the

unsteady part of the secondary flow vanishes.

Case-II: When nω ≪ 1, M2 ≪ 1 and K2 ≫ 1

In this case, the velocity components are given by

u = u0(η) +
∞∑

n=1

{[Un cosnωτ + Un
∗ sinnωτ ]

− 1

2

[
e−α1η [Un cos(nωτ − β1η) + Un

∗ sin(nωτ − β1η)]

+ e−α2η [Un cos(nωτ + β2η) + Un
∗ sin(nωτ + β2η)]]} , (3.25)

v = v0(η) +
1

2

∞∑

n=1

{
e−α1η [Un

∗ cos(nωτ − β1η)− Un sin(nωτ − β1η)]

− e−α2η [Un
∗ cos(nωτ + β2η)− Un sin(nωτ + β2η)]

}
, (3.26)

where α1,2 = K

(
1± nω

4K2
+

M2

4K2

)
,

β1,2 = K

(
1± nω

4K2
− M2

4K2

)
. (3.27)

It is seen from above equations (3.25) and (3.26) that for large rotation, that is for

large values of 2K2 there exist double-deck boundary layers near the plate η = 0.

The thicknesses of these boundary layers are of order O
{
K
(
1 + nω

4K2 +
M2

4K2

)}−1

and O
{
K
(
1− nω

4K2 +
M2

4K2

)}−1
near the plate η = 0. These layers may be iden-

tified as the Ekman layers modified by the frequency nω and the Hartmann

number M . The exponential terms in the above expressions damp out quickly as

η increases. When

η ≥ K

(
1± nω

4K2
+

M2

4K2

)
,

we get, u = u0(η) +
∞∑

n=1

[
Un cosnωτ + Un

∗ sin nωτ
]
,

v = v0(η). (3.28)
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Similar to the above case-I, it is observed from the above equations that for large

rotation parameter K2, the fluctuating part of the primary flow will be in phase

with the plate oscillations while the unsteady part of the secondary flow vanishes.

Case-III: When M2 ≫ 1, K2 ≪ 1 and nω ≪ 1

In this case also the flow field is of boundary layer type and we obtain the velocity

distribution as

u = u0(η) +
∞∑

n=1

{[Un cosnωτ + U∗
n sin nωτ ]

− 1

2

[
e−Mη [Un cos(nωτ − β1η) + Un

∗ sin(nωτ − β1η)]

− e−Mη [Un cos(nωτ − β2η) + U∗
n sin(nωτ − β2η)]]} , (3.29)

v = v0(η) +
1

2

∞∑

n=1

{
e−Mη [Un

∗ cos(nωτ − β1η)− Un sin(nωτ − β1η)]

− e−Mη [Un
∗ cos(nωτ − β2η)− Un sin(nωτ − β2η)]

}
, (3.30)

where β1, β2 =
1

2M
(nω ± 2K2).

The above expressions show the existence of a single boundary layer of thickness

of order of O(M)−1. This layer decreases with increase in M . It is interesting to

note that this boundary layer thickness is independent of both nω and K2. It is

seen that in certain core η ≥ 1/M , the exponential terms in equation (3.29) and

(3.30) damp out and the velocity field reduces to

u = u0(η) +
∞∑

n=1

[Un cos(nωτ) + Un
∗ sin(nωτ)] ,

v = v0(η). (3.31)

Similar to the above cases-I and -II, in this case also we observed from above

equation that for large Hartmann number M , the fluctuating part of the primary

flow will be in phase with the plate oscillations while the unsteady part of the

secondary flow vanishes.
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3.3 Single plate oscillation

In the limit d → ∞, equations (3.18) and (3.19) become

u = u0(η) +
∞∑

n=1

{(Un cosnω
∗t+ U∗

n sin nω
∗t)

− 1

2

(
U2
n + U∗

n
2
) [

e
−α1

∗y
√

2ν

{
cos

(
nω∗t∓ β∗

1y√
2ν

− θ

)}

+ e
−α2

∗y
√

2ν

{
cos

(
nω∗t− β2

∗y√
2ν

− θ

)}]}
, (3.32)

v = v0(η)−
∞∑

n=1

1

2

(
U2
n + U∗

n
2
) [

e
−α1

∗y
√
2ν

{
sin

(
nω∗t∓ β∗

1y√
2ν

− θ

)}

− e
−α2

∗y
√

2ν

{
sin

(
nω∗t− β∗

2y√
2ν

− θ

)}]
, (3.33)

where u0(η) and v0(η) are the velocity fields corresponding to the steady uniform

velocity U0 and are given by

u0(η) = U0

[
1− e

− α∗y
√

2ν cos

(
β∗y√
2ν

)]
,

v0(η) = U0 e
− α∗y

√
2ν sin

(
β∗y√
2ν

)
, (3.34)

where

θ = tan−1 (U∗
n/Un)

α∗, β∗ =

[{(
σB2

0

ρ

)2
+ 4Ω2

} 1

2 ± σB2
0

ρ

] 1

2

,

α∗
1, β

∗
1 =

[{(
σB2

0

ρ

)2
+ (nω∗ + 2Ω)2

} 1

2 ± σB2
0

ρ

] 1

2

,

α∗
2, β

∗
2 =

[{(
σB2

0

ρ

)2
+ (nω∗ − 2Ω)2

} 1

2 ± σB2
0

ρ

] 1

2

.

(3.35)

The above equations (3.32) and (3.33) represent the velocity components in the

presence of a uniform transverse magnetic field in a rotating system when the

free-stream velocity oscillates with velocity U0+
∑∞

n=1 (Un cosnω
∗t+ U∗

n sinnω
∗t).

Equations (3.32) and (3.33) show that the unsteady velocities consists of two

parts, one oscillates with amplitude 1
2

(
U2
n + U∗

n
2
)
e−α∗

1
y/

√
2ν and the other with
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1
2

(
U2
n + U∗

n
2
)
e−α∗

2
y/

√
2ν where α∗

1 and α∗
2 are given by (3.35). The boundary layer

corresponding to the amplitude 1
2

(
U2
n + U∗

n
2
)
e−α∗

1
y/

√
2ν at a distance y from the

plate oscillates with phase lag of (β∗
2y/

√
2ν+ θ) for nω∗ > 2Ω and phase advance

(β∗
2y/

√
2ν − θ) for nω∗ < 2Ω while the layer corresponding to the amplitude

1
2

(
U2
n + U∗

n
2
)
e−α∗

2
y/

√
2ν oscillates with phase lag of (β∗

2y/
√
2ν+θ) either for nω∗ >

2Ω or nω∗ < 2Ω. If Un = U∗
n = 0, then u(η) and v(η) are given by (3.34). This

results are identical with the result obtained by Batchelor [220].

3.4 Flow under harmonic oscillations of the plate

In this section, we shall consider the particular case when the plate velocity is

given by

f(τ) = U0 + U1 cosωτ. (3.36)

The flow field is then characterized by

u(η, τ) = u0(η) +Re
{
U1

[
1− 1

2
{cosh(α1 + iβ1)η + cosh(α2 ± iβ2)η

− cosh(α1 + iβ1)

sinh(α1 + iβ1)
sinh(α1 + iβ1)η

− cosh(α2 ± iβ2)

sinh(α2 ± iβ2)
sinh(α2 ± iβ2)η

}]
eiωτ

}
, (3.37)

v(η, τ) = v0(η) +Re
{
i

2
U1 [cosh(α1 + iβ1)η − cosh(α2 ± iβ2)η

− cosh(α1 + iβ1)

sinh(α1 + iβ1)
sinh(α1 + iβ1)η

+
cosh(α2 ± iβ2)

sinh(α2 ± iβ2)
sinh(α2 ± iβ2)η

]
eiωτ

}
, (3.38)

where α1, α2, β1, β2 are obtained from (3.20) by putting n = 1.

3.5 Results and discussion

In order to observe physical significance of this problem, both the steady and

unsteady velocity profiles are depicted graphically against η by employing specific

values to various pertinent parameters viz. M2 = 5, K2 = 4, ω = 12 and ωτ =



3.5. Results and discussion 55

900. Numerical values of shear stresses at η = 0, amplitude and tangent of phase

angles are entered in some Tables.

3.5.1 Primary and secondary velocity profiles

The steady primary velocity u0 and the secondary velocity v0 have been drawn

against η for different values of K2 and M2 in Figs.3.2 and 3.3. It is seen from

Fig.3.2 that for fixed M2, the primary velocity u0 increases with increase in K2.

K
2= 1, 4, 9, 25

u0

v0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Η

u
0
,
v

0

Fig.3.2: Steady primary velocity u0 and steady secondary velocity v0

corresponding to the steady uniform velocity U0 for K2 with M2 = 5

M2= 5, 10, 15, 20

u0

v0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Η

u
0
,
v

0

Fig.3.3: Steady primary velocity u0 and steady secondary velocity v0

corresponding to the steady uniform velocity U0 for M2 with K2 = 4
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It is also seen that secondary velocity v0 at any point increases for small values

of K2 while for large values of K2, it increases near the plate η = 0 and decreases

away form the plate η = 0. It is seen from Fig.3.3 that the steady primary

velocity u0 increases with increase in M2 while the steady secondary velocity v0

decreases with increase in M2.

For the discussion of the oscillatory part of the flow, the Figures 3.4-3.8 have

been drawn against η for the unsteady primary velocity uuns and the secondary

velocity vuns for various values of K
2, ω and ωτ with M2 = 5 and U1 = 1. It is

observed from Fig.3.4 that the unsteady primary velocity at any point increases

with increase in rotation parameter K2. Fig.3.5 shows that for ω ≥ 2K2 the uns-

K2= 1, 4, 6, 9, 16, 25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Η

u
u

n
s

Fig.3.4: Unsteady primary velocity uuns for K
2 with M2 = 5, ω = 12 and ωτ = 900

K
2= 9, 16, 25

K
2= 1, 4, 6

Ω < 2 K2

Ω ³ 2 K2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

Η

v
u

n
s

Fig.3.5: Unsteady secondary velocity vuns for K
2 with M2 = 5, ω = 12 and ωτ = 900
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teady secondary velocity steadily increases while for ω < 2K2 it increases near

the plate η = 0 and decreases away from the plate η = 0.

Ω = 1, 6, 12, 25, 49

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Η

u
u

n
s

Fig.3.6: Unsteady primary velocity uuns for ω with

M2 = 5, K2 = 4 and ωτ = 900

Ω = 1, 4, 8

Ω = 12, 25, 49

Ω £ 2 K2

Ω > 2 K2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

Η

v
u

n
s

Fig.3.7: Unsteady secondary velocity vuns for ω with

M2 = 5, K2 = 4 and ωτ = 900

It is seen from Fig.3.6 that for fixed values of M2, K2 and ωτ the unsteady pri-

mary velocity decreases with increase in frequency parameter ω. It is observed

from Fig.3.7 that the unsteady secondary velocity increases with increase in ω for

ω ≤ 2K2. On the other hand, for ω > 2K2, it increases near the plate η = 0 and

decreases away from the plate η = 0. Fig.3.8 shows that the unsteady primary
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velocity decreases while the unsteady secondary velocity increases with increase

in ωτ .

ΩΤ = 00, 300, 450, 600

u
uns

5 v
uns

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Η

u
u

n
s
,

5
v

u
n

s

Fig.3.8: Unsteady velocity distributions uuns and vuns for ωτ

with M2 = 5, ω = 12 and K2 = 4

3.5.2 Shear stresses

The non-dimensional components of the shear stresses at the plate η = 0 are

given by

τu = u′
0(0) +R1 cos(ωt+ φ1),

τv = v′0(0) +R2 cos(ωt+ φ2), (3.39)

where

u′
0(0) =

α sinh 2α + β sin 2β

cosh 2α− cos 2β
, v′0(0) =

β sinh 2α− α sin 2β

cosh 2α− cos 2β
,

R1 =
1

2

[
(x1 + x2)

2 + (y1 ± y2)
2
]1/2

, tanφ1 =
y1 ± y2
x1 + x2

,

R2 =
1

2

[
(y1 ∓ y2)

2 + (x2 − x1)
2
]1/2

, tanφ2 =
x2 − x1

y1 ∓ y2
,

x1 =
α1 sinh 2α1 + β1 sin 2β1

cosh 2α1 − cos 2β1
, y1 =

β1 sinh 2α1 − α1 sin 2β1

cosh 2α1 − cos 2β1
,

x2 =
α2 sinh 2α2 + β2 sin 2β2

cosh 2α2 − cos 2β2
, y2 =

β2 sinh 2α2 − α2 sin 2β2

cosh 2α2 − cos 2β2
. (3.40)
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The values of u′
0(0) and v′0(0) are given in Table-3.1 for different values of K2

and M2. It is observed from Table-3.1 that u′
0(0) increases with an increase in

either K2 or M2. On the other hand, v′0(0) increases with an increase in K2 but

it decreases with an increase in M2.

Table-3.1: Shear stresses at η = 0 with ω = 9

u
′

0
(0) v

′

0
(0)

M
2

5

10

15

20

K
2 = 1 K

2 = 4 K
2 = 9 K

2 = 16

2.3163 2.6642 3.8763 4.3255

3.1875 3.3731 3.5656 4.6661

3.8845 3.9995 3.0008 5.0175

4.4788 4.5574 2.5214 5.3731

K
2 = 1 K

2 = 4 K
2 = 9 K

2 = 16

0.4074 1.4714 2.6243 3.6998

0.3090 1.1771 2.3041 3.4298

0.2562 0.9973 2.0539 3.1894

0.2229 0.8767 1.8585 2.9781

Table-3.2: Values of amplitude R1

Different values of K2 with ω = 12 Different values of ω with K
2 = 6

M
2

5

10

15

20

1 4 6 9 16

3.2172 3.2999 3.4535 3.7957 4.6846

3.7034 3.8331 3.9693 4.2555 5.0633

4.2204 4.3372 4.4550 4.6905 5.3818

4.7157 4.8129 4.9125 5.1082 5.6978

1 4 12 16 25

3.1291 3.1967 3.4535 3.6678 4.4000

3.6798 3.7335 3.9693 4.1526 4.6778

4.2066 4.2501 4.4550 4.6064 5.0284

4.7058 4.7407 4.9125 5.0376 5.3888

Table-3.3: Values of amplitude R2

Different values of K2 with ω = 12 Different values of ω with K
2 = 6

M
2

5

10

15

20

1 4 6 9 16

1.0333 1.5221 1.7238 1.9950 2.6026

0.9413 1.3040 1.5131 1.7677 2.2398

0.8305 1.1516 1.3487 1.6014 2.0677

0.7440 1.0387 1.2218 1.4689 1.9418

1 4 12 16 25

1.1760 1.3131 1.7238 1.9120 2.0105

0.9131 1.0839 1.5131 1.6849 1.9657

0.7828 0.9452 1.3487 1.5186 1.8394

0.6950 0.8450 1.2218 1.3895 1.7180

The values of amplitudes R1 and R2 are entered in Tables-3.2 and -3.3 for

various values of K2, ω and M2. It is seen from Table-3.2 that R1 increases with

an increase in either M2 or K2 or ω. Table-3.3 shows that the amplitude R2

increases with an increase in either K2 or ω. On the other hand, for fixed values

of K2 and ω, R2 decreases with an increase in M2.
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The values of tanφ1 and tanφ2 have been entered in Tables-3.4 and -3.5 for

various values of K2, ω and M2. It is seen that tanφ1 has a phase lead over the

oscillations for ω > 2K2 and a phase lag over the oscillations for ω ≤ 2K2. It

is also seen that tanφ2 has always a phase lead over the oscillations either for

ω > 2K2 or ω ≤ 2K2. Tables-3.4 and -3.5 show that the magnitude of tanφ1 and

tanφ2 decreases with an increase in M2. It is observed from Table-3.4 that the

magnitude of tanφ1 increases with an increase in ω. Table-3.5 shows that with

an increase in K2, tanφ2 increases for ω ≥ 2K2 and decreases for ω < 2K2.

Table-3.4: Values of tanφ1

Different values of K2 with ω = 12 Different values of ω with K
2 = 6

M
2

5

10

15

20

1 4 6 9 16

0.4055 0.4680 -0.5181 -0.5224 -0.5400

0.2695 0.3440 -0.3815 -0.4174 -0.4393

0.2015 0.2674 -0.3021 -0.3427 -0.3935

0.1596 0.2164 -0.2486 -0.2886 -0.3493

1 4 12 16 25

-0.3175 -0.3895 -0.5181 0.5270 0.5644

-0.2454 -0.2915 -0.3815 0.4094 0.4462

-0.1873 -0.2238 -0.3021 0.3316 0.3761

-0.1489 -0.1794 -0.2486 0.2765 0.3241

Table-3.5: Values of tanφ2

Different values of K2 with ω = 12 Different values of ω with K
2 = 6

M
2

5

10

15

20

1 4 6 9 16

0.1560 0.4218 0.4910 0.3599 0.2820

0.1146 0.3196 0.3780 0.3016 0.2251

0.0906 0.2519 0.3014 0.2724 0.2058

0.0740 0.2054 0.2481 0.2481 0.1941

1 4 12 16 25

0.4844 0.2712 0.4910 0.4944 0.4144

0.0613 0.2021 0.3780 0.3923 0.3469

0.0485 0.1594 0.3014 0.3206 0.3035

0.0397 0.1299 0.2481 0.2686 0.2677

3.6 Conclusion

Consider an unsteady viscous incompressible electrically conducting fluid between

two infinite horizontal parallel plates in a rotating system where one of the plate

is held at rest and the other oscillates in its own plane. The governing equations

are solved assuming the plate velocity in the form of Fourier series. Asymptotic

behaviours of the solution are analyzed taking very large values of frequency

parameter, rotation parameter and squared-Hartman number. From the above

study, the main findings are given below:
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• Asymptotic expansion ensures that either for large frequency parameter or

for large rotation parameter, there exists a double-deck boundary layers

whereas for large Hartmann number there exists a single-deck boundary

layer.

• The steady primary velocity increases while the steady secondary velocity

decreases with an increase in Hartmann number M .

• The unsteady primary velocity increases with an increase in rotation pa-

rameter K2.

• For large values of K2 viz. K2 > 16, secondary flow has a back flow near

the moving plate.

• Phase angle causes to decrease the unsteady primary velocity while it causes

to increase the unsteady secondary velocity.

• The shear stress u′
0(0) increases with an increase in either M2 or K2.

• The shear stress v′0(0) increases with an increase in K2 while it decreases

with an increase in M2.

• Rotation parameter leads to increase the amplitudes.

• Magnitude of tanφ1 and tanφ2 decreases with an increase in M2.
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