
Chapter 7

Application of complex fuzzy soft sets in

medical diagnosis system through a

similarity measure approach

7.1 Introduction

In the context of cumulative human expectancy and budge constraint, providing a proper
medical care is a crucial issue in medical science. In order to help the medical consultants
for accomplishing this crucial medical issue, several mathematicians have developed
different types of mathematical solutions so that patients can get a fast and trustworthy
diagnosis service at their hard time. Most of the existing mathematical approaches are
supported to handle crisp data [120, 163]. However, in general medical practice, uncertainty
is an inward rife substance due to the vagueness emerging from drawing a proper conclusion
of the health status of a patient. Zadeh’s [183] fuzzy set theory has been of wide use in
monitoring uncertainty where, an imprecise or vague data can be defined in a conventional
way by using a suitable membership function [1, 114]. Then, various approaches have been
suggested to deal with disease diagnosis problems by using fuzzy set theory and its other
extensions. Djatna et al. [52] provided a stroke disease diagnosis approach through
intuitionistic fuzzy sets, Karaaslan [87] proposed a Gaussian single-valued neutrosophic
number based multi-criteria decision-making approach for solving medical diagnosis
problems, Hashmi et al. [78] used m-polar neutrosophic topology in medical science, etc.
Furthermore, type-2 fuzzy set and generalized type-2 fuzzy set have also been used by the
researchers [122, 123] in medical process.
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Though fuzzy set theory and its several extensions are very influential for handling
uncertainty, Prof. Molodtsov [118] brought out some of its difficulties in considering an
appropriate membership function of a problem. Then, he appointed the notion of uncertainty
from a different points of view by using parameterization and introduced soft set
theory [118]. In soft set theory, construction of membership function has been replaced by
the idea of parameterization for defining an element. Consequently, with a very small
duration of time, soft set theory has become a herculean theoretical approach for solving
uncertainty. Further, Maji et al. incorporated soft set theory with fuzzy set theory and
initiated the idea of fuzzy soft set theory [104] where, all the associated parameters are in
fuzzy sense. Actually, in fuzzy soft set, the issue fuzziness is handled by the human
cognitive process without considering a membership function. Therefore, it is very useful in
practice. In existing studies, we have observed that, researchers have been benefitted by
fuzzy soft set theory in solving problems in disease diagnosis system. For instance, Basu et
al. [22] mentioned a new approach, mean potentiality, for fuzzy soft set based problems.
Then, Tang [155], Li et al. [99] and Wang et al. [161] developed some fuzzy soft set based
algorithms by using Dempster-Shafer-Theory of evidence.

However, in many cases, all the considered parameters are not in fuzzy sense but may be
in complex fuzzy sense. Complex fuzzy sense comes from complex fuzzy set. Basically,
complex fuzzy set [137] is a generalization of Zadeh’s fuzzy set where, range of the fuzzy
membership function [0, 1] is transformed into the unit circle of a complex plane.
Mathematically, a complex fuzzy membership is written in the form as, a(x)eib(x) where,
a(x) ∈ [0, 1] (a fuzzy value) is its amplitude part and b(x) (real number) is its phase part. In
many day-to-day life problems, two information need to be expressed together. For
example, in periodic or recurring phenomena related problems (which are generally seems
in solar activity system, financial indicator system, signal processing system, disease
diagnosis system, etc.), time function is a vital part and should be considered additionally
with any associated criteria. Such type of problems can be limned through complex fuzzy
set. Then, Thirunavukarasu et al. [158] combined soft set theory with complex fuzzy set and
introduced the idea of complex fuzzy soft set in order to consider all the parameters in
complex fuzzy sense. Complex fuzzy soft set is a recent developed model of soft set theory
as well as fuzzy soft set theory where, the evaluation of an alternative over a parameter is a
two dimensional information in terms of amplitude part and phase part.

Moreover, similarity measure and distance measure are two conflicting representations for
comparing two items; one is in favor of their closeness degree and another one is in favor of
their deviation degree. In many different fields like, pattern recognition, decision-making,
disease diagnosis, etc., these two representations have been used very successfully.
Numerous researchers have offered different types of similarity measure and distance
measure approaches for comparing fuzzy sets [26], intuitionistic fuzzy sets [151],
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neutrosophic sets, [27] etc. Furthermore, similarity measure and distance measure have also
been well introduced in soft set theory [109, 112] and applied magnificently in many
decision-making problems. But, yet for complex fuzzy soft sets, similarity measure and
distance measure have not been explored.

Usually, in a multi-expert decision-making, different experts provide their opinions about
some associated alternatives and then a common decision is taken by integrating all of their
opinions. Therefore, aggregation operation is a very common aspect in solving multi-expert
decision-making. In literature, various aggregation operations have been saved to deal with
soft set based decision making under different uncertain environments. Roy et al. [139] and
Alcantud [4] used AND aggregation operation to construct a resultant fuzzy soft set from
multiple fuzzy soft sets. Then, Mao et al. [103] considered the most ancient aggregation
operations, arithmetic mean and geometric mean, to get a resultant from a group
decision-making based on intuitionistic fuzzy soft sets. Akram et al. [10] also used
arithmetic mean and geometric mean for solving hesitant N-soft set based group
decision-making. Further, Garg and Arora mentioned some aggregation operations for
intuitionistic fuzzy soft sets [66, 67], Khalil et al. [90] introduced an aggregation operation
for interval-valued picture fuzzy soft sets, Guleria and Bajaj [69] proposed an aggregation
operation for T-spherical fuzzy soft sets, etc. But, till now, no researcher has emphasized the
aggregation operation on complex fuzzy soft sets.

So, from the aforementioned discussion, complex fuzzy soft set is a very effective
category of soft set by which complicated decision-making, specially disease diagnosis
decision-making where, time is a significant issue corresponding to any symptom of a
patient, can be handled. But, in previous literature review, there exist no work on on
decision-making over complex fuzzy soft set. Therefore, to develop this recent proposed
model, more research is needed. Therefore, in this chapter, we have motivated to work on
complex fuzzy soft set theory. Our main goals of this chapter are as follows:

• To introduce similarity measure approach on complex fuzzy soft sets.

• To develop an aggregation operation on complex fuzzy soft sets.

• To propose a multi-expert decision-making over complex fuzzy soft sets.

• To compose decision-making problem in medical science by using our proposed
decision-making approach.

This chapter has been organized as follows. In Section 7.2, we have reviewed some
preliminary ideas related to our subsequent discussions. Then, in Sections 7.3, we have
introduced the similarity measure approach for complex fuzzy soft sets. In Section 7.4, an
aggregation operation on complex fuzzy soft sets has been presented. After that, in Section
7.5, we have proposed a complex fuzzy soft set based multi-expert decision-making
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approach. Section 7.6 provides a case study and its solution which is related with the
medical diagnosis system. In Section 7.7, comparative analysis and sensitivity analysis have
been given to examine the feasibility and effectiveness of our proposed. Finally, in Section
7.8, we have given the conclusion of this chapter.

7.2 Some basic relevant notions
(i) Some set theoretic operations on complex fuzzy sets [185].

Consider two complex fuzzy sets C̃A and C̃B over a universal set X as follows:
C̃A = {(xs, pA(xs)e

iuA(xs))|∀xs ∈ X}, C̃B = {(xs, pB(xs)e
iuB(xs))|∀xs ∈ X};

∀s = 1, 2, ..,m.

• Complex fuzzy intersection [185]

Complex fuzzy intersection of two complex fuzzy sets C̃A and C̃B is as follows:
C̃A ∩ C̃B =

{(
xs, µC̃A∩C̃B(xs)

)
|xs ∈ X

}
where,

µC̃A∩C̃B(xs) = min (pA(xs), pB(xs)) e
imin(uA(xs),uB(xs)); i =

√
−1, ∀xs ∈ X .

• Complex fuzzy union [185]

Complex fuzzy union of two complex fuzzy sets C̃A and C̃B is as follows:
C̃A ∪ C̃B =

{(
xs, µC̃A∪C̃B(xs)

)
|xs ∈ X

}
where,

µC̃A∪C̃B(xs) = max(pA(xs), pB(xs))e
imax(uA(xs),uB(xs)); i =

√
−1, ∀xs ∈ X .

• Complex fuzzy complement [185]

Complement of a complex fuzzy set C̃A can be derived as follows:
C̃c
A = {(x, µC̃cA(x))|x ∈ X}

where,
µC̃cA

(x) = (1− pA(x))ei(2π−uA(x)); i =
√
−1, ∀x ∈ X .

(ii) Distance measure between complex fuzzy sets [9, 185].

Distance between two complex fuzzy sets C̃A and C̃B is denoted by d(C̃A, C̃B), which
satisfies the following properties:
(i) d(C̃A, C̃B) ∈ [0, 1];
(ii) d(C̃A, C̃B) = 0, if C̃A = C̃B;
(iii) d(C̃A, C̃B) = d̃(C̃B, C̃A);
(iv) If, C̃A ⊆ C̃B ⊆ C̃D then, d(C̃A, C̃D) ≥ d(C̃A, C̃B) and d(C̃A, C̃D) ≥ d(C̃B, C̃D),
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where, C̃D = {(xs, pD(xs)e
iuD(xs))|∀xs ∈ X} is an another complex fuzzy set over X .

Euclidean distance between two complex fuzzy sets C̃A and C̃B is defined as follows:

d̃E(C̃A, C̃B) =

√√√√ 1

2m

[
m∑
s=1

{
(pA(xs)− pB(xs))

2 +
1

4π2
(uA(xs)− uB(xs))

2

}]

(iii) Mathematical representation of a complex fuzzy soft set (CFSS) [158].

A complex fuzzy soft set over X is defined as an order pair ( ˜̃F,E), where, ˜̃F is a mapping
defined as, ˜̃F : E → ρ̃(X); E is the set of parameters which are in complex fuzzy sense and
ρ̃(X) is the set of all complex fuzzy subsets of the set X .

If, X = {x1, x2, .., xm} be the initial universe and E = {e1, e2, .., en} be the set
corresponding complex fuzzy parameters then, a complex fuzzy soft set ( ˜̃F,E) over X is
defined as follows:

( ˜̃F,E) = {(e1,
˜̃F (e1)), (e2,

˜̃F (e2)), .., (en,
˜̃F (en))}

= {(e1, ((x1, p11e
iu11), (x2, p21e

iu21), .., (xm, pm1e
ium1))), (e2, ((x1, p12e

iu12),

(x2, p22e
iu22), .., (xm, pm2e

ium2))), .., (en, ((x1, p1ne
iu1n),

(x2, p2ne
iu2n), .., (xm, pmne

iumn)))}

where, psj ∈ [0, 1] is the amplitude part and usj ∈ [0, 2π] is the phase part of the evaluation
of an alternative xs; s = 1, 2, ..,m over a parameter ej; j = 1, 2, .., n.

(iv) Basic set theoretic operations of complex fuzzy soft sets [144].

Consider two complex fuzzy soft sets over X as follows:

( ˜̃F 1, E) = {(ej, ˜̃F 1(ej))∀ej ∈ E} = {(ej, (xs, p1
sje

iu1sj))|∀ej ∈ E, xs ∈ X}

( ˜̃F 2, E) = {(ej, ˜̃F 2(ej))∀ej ∈ E} = {(ej, (xs, p2
sje

iu2sj))|∀ej ∈ E, xs ∈ X}

• Complex fuzzy soft union [144]

Complex fuzzy soft union of ( ˜̃F 1, E) and ( ˜̃F 2, E) is denoted by,
( ˜̃F 1, E) ∪ ( ˜̃F 2, E) = ( ˜̃H,E) and is defined as follows:

( ˜̃H,E) = {(ej, ˜̃H(ej))∀ej ∈ E} = {(ej, (xs,max(p1
sj, p

2
sj)e

imax(u1sj ,u
2
sj)))|∀ej ∈ E, xs ∈ X}

• Complex fuzzy soft intersection [144]
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Complex fuzzy soft intersection of ( ˜̃F 1, E) and ( ˜̃F 2, E) is denoted by,
( ˜̃F 1, E) ∩ ( ˜̃F 2, E) = ( ˜̃H,E) and is defined as follows:

( ˜̃H,E) = {(ej, ˜̃H(ej))∀ej ∈ E} = {(ej, (xs,min(p1
sj, p

2
sj)e

imin(u1sj ,u
2
sj)))|∀ej ∈ E, xs ∈ X}

• Complex fuzzy soft subset and complex fuzzy soft equal [144]

The complex fuzzy soft set ( ˜̃F 1, E) is said to be complex fuzzy soft subset of ( ˜̃F 2, E)

if, ∀ej ∈ E and ∀xs ∈ X, p1
sj ≤ p2

sj and u
1
sj ≤ u2

sj

If, ∀ej ∈ E and xs ∈ X , p1
sj = p2

sj and u1
sj = u2

sj then, ( ˜̃F 1, E) is said to be the complex

fuzzy soft equal to ( ˜̃F 2, E).

• Absolute complex fuzzy soft set and null complex fuzzy soft set [144]

A complex fuzzy soft set ( ˜̃F,E) over X is said to be an absolute complex fuzzy soft set, if
∀ej ∈ E and xs ∈ X , psj = 1 and usj = 2π. Mathematically, it is denoted by, ( ˜̃F,E)1̄.

Similarly, a complex fuzzy soft set ( ˜̃F,E) is called a null complex fuzzy soft set over X , if
∀ej ∈ E and xs ∈ X , psj = 0 and usj = 0π. Mathematically, it is denoted by, ( ˜̃F,E)0̄.

7.3 Similarity measure approach to complex fuzzy soft sets
Similarity measure of two objects determines the degree of closeness or degree of sameness
between them. In many different fields like, pattern recognition, cluster analysis, decision-
making, etc. it plays an effective role. Now, we have introduced a new similarity measure
approach, named as ratio similarity measure, for complex fuzzy soft sets. Firstly, we have
introduced this new approach for complex fuzzy sets (as given in Subsection 7.2.1) and then,
we have extended it to complex fuzzy soft sets (as given in Subsection 7.2.2).

7.3.1 Ratio similarity measure to complex fuzzy sets
Axiomatic definition of similarity measure of complex fuzzy sets.

Definition 7.1. Let, X = {x1, x2, .., xm} and CA, CB be two complex fuzzy sets with
respect to X where, C̃A =

{
(xs, pA(xs)e

iuA(xs))|s = 1, 2, ..,m
}

with each pA(xs) ∈ [0, 1]

and each uA(xs) ∈ [0, 2π] and C̃B =
{

(xs, pB(xs)e
iuB(xs))|s = 1, 2, ..,m

}
with each

pB(xs) ∈ [0, 1] and each uB(xs) ∈ [0, 2π].
Now consider a function S̃ as, S̃ : ℘(X)× ℘(X) → [0, 1], where, ℘(X) is the set of all
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complex fuzzy sets of the set X . Then, S̃ is said to be a similarity measure for complex
fuzzy sets if, S̃ satisfies the following properties: ∀C̃A, C̃B, C̃D ∈ ℘(X),
(i) S̃(C̃A, C̃B) ∈ [0, 1];
(ii) S̃(C̃A, C̃B) = 1 if and only if C̃A = C̃B;
(iii) S̃(C̃A, C̃B) = S̃(C̃B, C̃A);
(iv) If, C̃A ⊆ C̃B ⊆ C̃D, then, S̃(C̃A, C̃B) ≥ S̃(C̃A, C̃D) and S̃(C̃B, C̃D) ≥ S̃(C̃A, C̃D),
where, C̃D =

{
(xs, pD(xs)e

iuD(xs))|s = 1, 2, ..,m
}

is the another complex fuzzy set over X .
Ratio similarity measure of complex fuzzy sets.
Since, in every complex fuzzy evaluation there exist two decision information where, one is
expressed through amplitude part and another one is expressed through phase part
therefore, to measure the similarity degree of two complex fuzzy sets, we have measured
their similarity for amplitude part and phase part individually and then added them for
deriving the total similarity. In the following, mathematically it has been illustrated.

Definition 7.2. The ratio similarity measure between two complex fuzzy sets C̃A and C̃B is
denoted by, S̃R(C̃A, C̃B) and is defined by the following equation,

S̃R(C̃A, C̃B) =

m∑
s=1

min
(
pA(xs), pB(xs)

)
m∑
s=1

(
pA(xs) + pB(xs)

) +

m∑
s=1

min
(
uA(xs), uB(xs)

)
m∑
s=1

(
uA(xs) + uB(xs)

) (7.1)

Example 7.1. Let, X = {x1, x2, x3} be a universal set. Now, assume two complex fuzzy
sets over X as, C̃A =

{
(x1, 1e

i2π), (x2, 1e
iπ), (x3, 0.9e

i2π)
}

;
C̃B =

{
(x1, .9e

i3π/2), (x2, 1e
i2π/3), (x3, 0.8e

i2π)
}

.
Then, the ratio similarity between them is as follows:
S̃R(C̃A, C̃B) = 0.9+1+0.8

1.9+2+1.7
+

3π
2

+ 2π
3

+2π
7π
2

+ 5π
3

+4π
= 2.7

5.6
+ 25

55
= 0.93.

Theorem 7.1. Ratio similarity measure of two complex fuzzy sets (Equation 7.1) satisfies
all the properties of Definition 7.1.

Proof. (i) Since, each pA(xs), pB(xs) ∈ [0, 1] and each uA(xs), uB(xs) ∈ [0, 2π],
then, min(pA(xs), pB(xs)) ≥ 0 and min(uA(xs), uB(xs)) ≥ 0.
Moreover, min(pA(xs), pB(xs)) ≤ 1

2
(pA(xs) + pB(xs)) and

min(uA(xs), uB(xs)) ≤ 1
2
(uA(xs) + uB(xs)).

Then,

m∑
s=1

min(pA(xs),pB(xs))

m∑
s=1

(pA(xs)+pB(xs))
≤ 1

2
and

m∑
s=1

min(uA(xs),uB(xs))

m∑
s=1

(uA(xs)+uB(xs))
≤ 1

2
.

Hence, from Equation 7.1 it is obvious that, S̃R(C̃A, C̃B) ∈ [0, 1].

(ii) C̃A = C̃B ⇔ pA(xs) = pB(xs) and uA(xs) = uB(xs).
Then from Equation 7.1 we get, S̃R(C̃A, C̃B) = 1.
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(iii) S̃R(C̃A, C̃B) =

m∑
s=1

min
(
pA(xs),pB(xs)

)
m∑
s=1

(
pA(xs)+pB(xs)

) +

m∑
s=1

min
(
uA(xs),uB(xs)

)
m∑
s=1

(
uA(xs)+uB(xs)

) =

m∑
s=1

min
(
pB(xs),pA(xs)

)
m∑
s=1

(
pB(xs)+pA(xs)

) +

m∑
s=1

min
(
uB(xs),uA(xs)

)
m∑
s=1

(
uB(xs)+uA(xs)

) = S̃R(C̃B, C̃A).

(iv) C̃A ⊆ C̃B ⊆ C̃D ⇔ pA(xs) ≤ pB(xs) ≤ pD(xs); uA(xs) ≤ uB(xs) ≤ uD(xs).

Then,
m∑
s=1

min(pA(xs), pB(xs)) =
m∑
s=1

min(pA(xs), pD(xs));
m∑
s=1

min(uA(xs), uB(xs)) =
m∑
s=1

min(uA(xs), uD(xs)) and
m∑
s=1

(pA(xs) + pB(xs)) ≤
m∑
s=1

(pA(xs) + pD(xs));
m∑
s=1

(uA(xs) + uB(xs)) ≤
m∑
s=1

(uA(xs) + uD(xs)).

These results imply that,

m∑
s=1

min(pA(xs),pB(xs))

m∑
s=1

(pA(xs)+pB(xs))
≥

m∑
s=1

min(pA(xs),pD(xs))

m∑
s=1

(pA(xs)+pD(xs))
and

m∑
s=1

min(uA(xs),uB(xs))

m∑
s=1

(uA(xs)+uB(xs))
≥

m∑
s=1

min(uA(xs),uD(xs))

m∑
s=1

(uA(xs)+uD(xs))
.

Then, from Equation 7.1 it is obtained that,

S̃R(C̃A, C̃B) =

m∑
s=1

min
(
pA(xs),pB(xs)

)
m∑
s=1

(
pA(xs)+pB(xs)

) +

m∑
s=1

min
(
uA(xs),uB(xs)

)
m∑
s=1

(
uA(xs)+uB(xs)

) ≥
m∑
s=1

min
(
pA(xs),pD(xs)

)
m∑
s=1

(
pA(xs)+pD(xs)

) +

m∑
s=1

min
(
uA(xs),uD(xs)

)
m∑
s=1

(
uA(xs)+uD(xs)

) = S̃R(C̃A, C̃D).

In the similar way, it can also be proved that, S̃R(C̃B, C̃D) ≥ S̃R(C̃A, C̃D).

7.3.2 Ratio similarity measure to complex fuzzy soft sets

Axiomatic definition of similarity measure of complex fuzzy soft sets.

Definition 7.3. Let, X = {x1, x2, .., xm} and E = {e1, e2, .., en}. Now, consider a mapping
Ŝ : ℘CFSS(X) × ℘CFSS(X) → [0, 1] where, ℘CFSS(X) is the set of all complex fuzzy soft
sets over X . Then, the mapping Ŝ is said to be a similarity measure for complex fuzzy soft
sets if and only if it follows the following conditions: ∀( ˜̃F,E), ( ˜̃G,E), ( ˜̃H,E) ∈ ℘CFSS(X),

(S1) Ŝ(( ˜̃F,E), ( ˜̃G,E)) ∈ [0, 1];
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(S2) Ŝ(( ˜̃F,E), ( ˜̃G,E)) = Ŝ(( ˜̃G,E), ( ˜̃F,E));

(S3) Ŝ(( ˜̃F,E), ( ˜̃G,E)) = 1⇔ ( ˜̃F,E) = ( ˜̃G,E);

(S4) If, ( ˜̃F,E) ⊆ ( ˜̃G,E) ⊆ ( ˜̃H,E), then, Ŝ(( ˜̃F,E), ( ˜̃G,E)) ≥ Ŝ(( ˜̃F,E), ( ˜̃H,E)) and
Ŝ(( ˜̃G,E), ( ˜̃H,E)) ≥ Ŝ(( ˜̃F,E), ( ˜̃H,E)).

Ratio similarity measure of complex fuzzy soft sets.

Definition 7.4. Consider two complex fuzzy soft sets over X as follows:

( ˜̃F,E) = {(e1, ((x1, p
F
11e

iuF11), (x2, p
F
21e

iuF21), .., (xm, p
F
m1e

iuFm1))),

(e2, ((x1, p
F
12e

iuF12), (x2, p
F
22e

iuF22), .., (xm, p
F
m2e

iuFm2))), ..,

(en, ((x1, p
F
1ne

iuF1n), (x2, p
F
2ne

iuF2n), .., (xm, p
F
mne

iuFmn)))}

( ˜̃G,E) = {(e1, ((x1, p
G
11e

iuG11), (x2, p
G
21e

iuG21), .., (xm, p
G
m1e

iuGm1))),

(e2, ((x1, p
G
12e

iuG12), (x2, p
G
22e

iuG22), .., (xm, p
G
m2e

iuGm2))), ..,

(en, ((x1, p
G
1ne

iuG1n), (x2, p
G
2ne

iuG2n), .., (xm, p
G
mne

iuGmn)))}

where, pFsj ∈ [0, 1] is the amplitude part and uFsj ∈ [0, 2π] is the phase part of the evaluation of

an alternative xs over the parameter ej with respect to the complex fuzzy soft set ( ˜̃F,E) and
similarly, pGsj ∈ [0, 1] is the amplitude part and uGsj ∈ [0, 2π] is the phase part of the evaluation

of an alternative xs over the parameter ej with respect to the complex fuzzy soft set ( ˜̃G,E).

Then, the ratio similarity of ( ˜̃F,E) and ( ˜̃G,E) is denoted by, ŜR(( ˜̃F,E), ( ˜̃G,E)) and is
defined by the following equation,

ŜR(( ˜̃F,E), ( ˜̃G,E)) =

∑n
j=1wjŜR( ˜̃F (ej),

˜̃G(ej))∑n
j=1 wj

(7.2)

where,

ŜR( ˜̃F (ej),
˜̃G(ej)) =

m∑
s=1

min
(
pFsj, p

G
sj

)
m∑
s=1

(
pFsj + pGsj

) +

m∑
s=1

min
(
uFsj, u

G
sj

)
m∑
s=1

(
uFsj + uGsj

)
and {w1, w2, .., wn} are the weights of the parameters with each wj ∈ [0, 1].
If,
∑n

j=1 wj = 1, then the above equation takes the form as follows:

ŜR(( ˜̃F,E), ( ˜̃G,E)) =
n∑
j=1

wjŜR( ˜̃F (ej),
˜̃G(ej)) (7.3)
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Table 7.1: CFSS ( ˜̃F,E) (Example 7.2)

e1 e2 e3

x1 0.9ei3π/2 0.1eiπ 0.5eiπ/2

x2 1eiπ 0.6ei3π/2 0.1eiπ/2

x3 0.6eiπ/2 0.4ei3π/2 0.3eiπ

Table 7.2: CFSS ( ˜̃G,E) (Example 7.2)

e1 e2 e3

x1 0.8ei2π 0.5eiπ/2 0.6ei3π/2

x2 0.2eiπ/2 0.6eiπ 0.2eiπ/2

x3 0.6eiπ 0.6ei3π/2 0.5eiπ

Example 7.2. Now, consider three elements as the universal set, X = {x1, x2, x3}. E =
{e1, e2, e3} be the set of three corresponding parameters which are in complex fuzzy sense.
Let, ( ˜̃F,E) and ( ˜̃G,E) be two complex fuzzy soft sets as follows:
( ˜̃F,E) = {

(
e1,
(
(x1, 0.9e

i3π/2), (x2, 1e
iπ), (x3, 0.6e

iπ/2)
))
,(

e2,
(
(x1, 0.1e

iπ), (x2, 0.6e
i3π/2), (x3, 0.4e

i3π/2)
))
,(

e3,
(
(x1, 0.5e

iπ/2), (x2, 0.1e
iπ/2), (x3, 0.3e

iπ)
))
};

( ˜̃G,E) = {
(
e1,
(
(x1, 0.8e

i2π), (x2, 0.2e
iπ/2), (x3, 0.6e

iπ)
))
,(

e2,
(
(x1, 0.5e

iπ/2), (x2, 0.6e
iπ), (x3, 0.6e

i3π/2)
))
,(

e3,
(
(x1, 0.6e

i3π/2), (x2, 0.2e
iπ/2), (x3, 0.5e

iπ)
))
}.

Tabular forms of ( ˜̃F,E) and ( ˜̃G,E) have been given in Table 7.1 and Table 7.2.
Now, assume that, w1 = 0.8; w2 = 0.9; w3 = 0.7.
Then,

ŜR( ˜̃F (e1), ˜̃G(e1)) =

{
(0.8 + 0.2 + 0.6)

(1.7 + 1.2 + 1.2)
+

(3π
2

+ π
2

+ π
2
)

(7π
2

+ 3π
2

+ 3π
2

)

}
=

1.6

4.1
+

5

13
≈ 0.77

ŜR( ˜̃F (e2), ˜̃G(e2)) =

{
(0.1 + 0.6 + 0.4)

(0.6 + 1.2 + 1)
+

(π
2

+ π + 3π
2

)

(3π
2

+ 5π
2

+ 3π
)

}
=

1.1

2.8
+

3

7
≈ 0.82

ŜR( ˜̃F (e3), ˜̃G(e3)) =

{
(0.5 + 0.1 + 0.3)

(1.1 + 0.3 + 0.8)
+

(π
2

+ π
2

+ π)

(2π + π + 2π)

}
=

0.9

2.2
+

2

5
≈ 0.81.

Therefore, the ratio similarity between between ( ˜̃F,E) and ( ˜̃G,E) is as follows:
ŜR(( ˜̃F,E), ( ˜̃G,E)) = 0.8×0.77+0.9×0.82+0.7×0.81

0.8+0.9+0.7
≈ 0.81.
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Theorem 7.2. Ratio similarity of two complex fuzzy soft sets satisfies all the properties of
Definition 7.3.

Proof. Proof is same as the proof of Theorem 7.1.

7.4 Aggregation operators on complex fuzzy soft sets
Generally, by using aggregation operation, multiple number of items can be integrated into a
single resultant item as a representative of all the items. Recently, in solving
decision-making involving multiple experts, some new proposals of aggregation operations
have been developed under different uncertain environments such as, fuzzy soft set [142],
T-spherical fuzzy soft set [69], intuitionsitic fuzzy soft set [66], neutrosophic soft set [80],
etc. But, there exist no work on aggregation operation of complex fuzzy soft sets. Therefore
in this section, we have proposed the aggregation operation on complex fuzzy soft sets.

Axiomatic definition of aggregation operation of complex fuzzy soft sets.

Definition 7.5. Consider an universal set as, X = {x1, x2, .., xm} and n corresponding
parameters as, E = {e1, e2, .., en} which are in complex fuzzy sense. Now, let, ℘CFSS(X)

be the set of all complex fuzzy soft sets over the universal set X . Then, a mapping ˜̃A, defined
as,
˜̃A : ℘CFSS(X)× ℘CFSS(X)× ..× ℘CFSS(X)︸ ︷︷ ︸→ ℘CFSS(X), is called a complex fuzzy soft

aggregation operator if, this function satisfies the following axiomatic properties.
Let, ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) be a set of k complex fuzzy soft sets over ℘CFSS(X). Then,

(A1) ˜̃A
(

( ˜̃F,E)1̄, (
˜̃F,E)1̄, .., (

˜̃F,E)1̄

)
= ( ˜̃F,E)1̄;

where, ( ˜̃F,E)1̄ is the absolute complex fuzzy soft set on ℘CFSS(X).

(A2) ˜̃A
(

(fC̃ , E)0̄, (
˜̃F,E)0̄, .., (

˜̃F,E)0̄

)
= ( ˜̃F,E)0̄;

where, ( ˜̃F,E)0̄ is the null complex fuzzy soft set over ℘CFSS(X).

(A3) If, ∀l = 1, 2, .., k, ( ˜̃F l, E) ≤ ( ˜̃Gl, E), then,
˜̃A
(

( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)
)
≤ ˜̃A

(
( ˜̃G1, E), ( ˜̃G2, E), .., ( ˜̃Gk, E)

)
,

where, ( ˜̃G1, E), ( ˜̃G2, E), .., ( ˜̃Gk, E) be the another k complex fuzzy soft sets over
℘CFSS(X).

(A4) If, ( ˜̃F+, E) and ( ˜̃F−, E) be the best approx (max-valued) complex fuzzy soft set and
worst approx (min-valued) complex fuzzy soft set among k complex fuzzy soft sets
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then,
( ˜̃F−, E) ≤ ˜̃A

(
( ˜̃F1, E), ( ˜̃F2, E), .., ( ˜̃Fk, E)

)
≤ ( ˜̃F+, E).

In Figure 7.1, graphical representation of aggregation of k complex fuzzy soft sets has been
given.

Figure 7.1: Aggregation of k complex fuzzy soft sets

Best approx (max-valued) and worst approx (min-valued) complex fuzzy soft sets.
Now, consider k complex fuzzy soft sets as, ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) where,

( ˜̃F l, E) =
{(
ej, (xs, p

l
sje

iulsj)]
)
|∀ej ∈ E, xs ∈ X

}
, l = 1, 2, .., k.

plsje
iulsj indicates the complex fuzzy rating of an alternative xs over a parameter ej

corresponding to the complex fuzzy soft set ( ˜̃F l, E).

Definition 7.6. The best approx (max-valued) complex fuzzy soft set over the k complex
fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) is denoted by, ( ˜̃F+, E) and is defined as follows:

( ˜̃F+, E) =
{(
ej,
(
xs,
(
max(p1

sj, p
2
sj, .., p

k
sj)e

imax(u1sj ,u2sj ,..,uksj)
)))
|∀ej ∈ E, xs ∈ X

}
.
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Tabular form of the best approx complex fuzzy soft set has been given in Table 7.3.

Table 7.3: Best approx complex fuzzy soft set ( ˜̃F+, E)
e1 e2

x1 max(p111, p
2
11, .., p

k
11)eimax(u

1
11,u

2
11,..,u

k
11) max(p112, p

2
12, .., p

k
12)eimax(u

1
12,p

2
12,..,p

k
12)

x2 max(p121, p
2
21, .., p

k
21)eimax(u

1
21,u

2
21,..,u

k
21) max(p122, p

2
22, .., p

k
22)eimax(u

1
22,u

2
22,..,u

k
22)

xm max(p1m1, p
2
m1, .., p

k
m1)eimax(u

1
m1,u

2
m1,..,u

k
m1) max(p1m2, p

2
m2, .., p

k
m2)eimax(u

1
m2,u

2
m2,..,u

k
m2)

. . . en

. . . max(p11n, p
2
1n, .., p

k
1n)eimax(u

1
1n,u

2
1n,..,u

k
1n)

. . . max(p12n, p
2
2n, .., p

k
2n)eimax(u

1
2n,u

2
2n,..,u

k
2n)

. . .

. . . max(p1mn, p
2
mn, .., p

k
mn)eimax(u

1
mn,u

2
mn,..,u

k
mn)

Definition 7.7. The worst approx (min-valued) complex fuzzy soft set over the k complex
fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) is denoted by, ( ˜̃F−, E) and is defined as follows:

( ˜̃F−, E) =
{(
ej,
(
xs,
(
min(p1

sj, p
2
sj, .., p

k
sj)e

imin(u1sj ,u2sj ,..,uksj)
)))
|∀ej ∈ E, xs ∈ X

}
.

Tabular form of the worst approx complex fuzzy soft set has been given in Table 7.4.

Table 7.4: Worst approx complex fuzzy soft set ( ˜̃F−, E)
e1 e2

x1 min(p111, p
2
11, .., p

k
11)eimin(u

1
11,u

2
11,..,u

k
11) min(p112, p

2
12, .., p

k
12)eimin(u

1
12,p

2
12,..,p

k
12)

x2 min(p121, p
2
21, .., p

k
21)eimin(u

1
21,u

2
21,..,u

k
21) min(p122, p

2
22, .., p

k
22)eimin(u

1
22,u

2
22,..,u

k
22)

xm min(p1m1, p
2
m1, .., p

k
m1)eimin(u

1
m1,u

2
m1,..,u

k
m1) min(p1m2, p

2
m2, .., p

k
m2)eimin(u

1
m2,u

2
m2,..,u

k
m2)

. . . en

. . . min(p11n, p
2
1n, .., p

k
1n)eimin(u

1
1n,u

2
1n,..,u

k
1n)

. . . min(p12n, p
2
2n, .., p

k
2n)eimin(u

1
2n,u

2
2n,..,u

k
2n)

. . .

. . . min(p1mn, p
2
mn, .., p

k
mn)eimin(u

1
mn,u

2
mn,..,u

k
mn)

Complex fuzzy soft weighted geometric mean aggregation operator.

In 2013, Yager and Abbasov [176] introduced the aggregation operation for k pythagorean
fuzzy numbers as follows:
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Definition 7.8 [176]. Let, A1, A2, .., Ak be a set of k criteria where, each of which has
pythagorean fuzzy membership degree as, Al(x) = rl(x)eiθl(x), l = 1, 2, .., k. It is also
assumed that, {w1, w2, .., wk} are the associated weights of the criteria such that, each wl ∈

[0, 1] and
k∑
l=1

wl = 1. Then, the geometric mean aggregation of these k pythagorean fuzzy

numbers is as follows:

A(x) =
k∏
l=1

(Al(x))wl =
k∏
l=1

(rl(x)eiθl(x))wl =
k∏
l=1

(rl(x))wle
i
k∑
l=1

θl(x)wl

Now, since, each of the evaluations in a complex fuzzy soft set is in terms of complex fuzzy
membership i.e., in the form as, plsje

iulsj where, plsj is fuzzy-valued and ulsj is real-valued,
therefore, we can follow this same manoeuvre to introduce geometric mean aggregation
operator for complex fuzzy soft sets.

Definition 7.9. Let, ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) be a set of k complex fuzzy soft sets over
X and E is the parameter set. The lth complex fuzzy soft set has been given below:

( ˜̃F l, E) =
{(
ej,

˜̃F l(ej)
)
|∀ej ∈ E

}
=
{(
ej,
(
xs,

˜̃F l
ej

(xs)
))
|∀ej ∈ E, xs ∈ X

}
=
{(
ej,
(
xs, p

l
sje

iulsj

))
|∀ej ∈ E, xs ∈ X

}
.

Consider that, W = {Wl,W2, ..,Wk} be the associated weights of the k complex fuzzy soft
sets where, Wl ∈ [0, 1],∀j.
Then, the complex fuzzy soft weighted geometric mean aggregation of k complex fuzzy soft
sets ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) is denoted by,
˜̃A
{W1,W2,..,Wk}
WGM

(
( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)

)
and is defined as follows:

˜̃A
{W1,W2,..,Wk}
WGM

(
( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)

)
= ( ˜̃F,E) =

ej,
xs,

(
k∏
l=1

(plsje
iulsj)Wl

)1/
k∑
l=1

Wl


 |∀ej ∈ E, xs ∈ X

 (7.4)

where,(
k∏
l=1

(plsje
iulsj)Wl

)1/
k∑
l=1

Wl

=
(

(p1
sje

iu1sj)W1 × (p2
sje

iu2sj)W2 × ..(pksjeiu
k
sj)Wk

)1/
k∑
l=1

Wl

=


(

k∏
l=1

(plsj)
Wl

)1/
k∑
l=1

Wl

 e

i


k∑
l=1

Wlu
l
sj

k∑
l=1

Wl
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Since, each plsj ∈ [0, 1] and each Wl ∈ [0, 1] then, it is obvious that,(∏k
l=1(plsj)

Wl

)1/
k∑
l=1

Wl

∈ [0, 1]. Moreover, since, each ulsj ∈ [0, 2π] then, clearly it is

obtained that,

k∑
l=1

Wlu
l
sj

k∑
l=1

Wl

∈ [0, 2π].

• If,
k∑
l=

wl = 1 then, Equation 7.4 takes the form as follows:

˜̃A
{w1,w2,..,wk}
GM

(
( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)

)
= ( ˜̃F,E)

=

{(
ej,

(
xs,

k∏
l=1

(plsje
iulsj)wl

))
|∀ej ∈ E, xs ∈ X

}

Theorem 7.3. Complex fuzzy soft weighted geometric mean aggregation operator satisfies
all the properties of Definition 7.5.

Proof. (A1) We have, ( ˜̃F,E)1̃ =
{

(ej, (xs, 1e
i2π))|∀ej ∈ E, xs ∈ X

}
.

Then, from Equation 7.4,
˜̃A
{W1,W2,..,Wk}
WGM

(
( ˜̃F,E)1, (

˜̃F,E)1, .., (
˜̃F,E)1

)
=

ej,
xs,(∏k

l=1(1ei2π)Wl

)1/
k∑
l=1

Wl

 |∀ej ∈ E, xs ∈ X


which implies that,

(∏k
l=1(1ei2π)Wl

)1/
k∑
l=1

Wl

=

(∏k
l=1(1)Wl

)1/
k∑
l=1

Wl

 e

i


k∑
l=1

Wl2π

k∑
l=1

Wl


= 1ei2π.

So, it is obtained that, ˜̃A
{W1,W2,..,Wk}
WGM

(
( ˜̃F,E)1, (

˜̃F,E)1, .., (
˜̃F,E)1

)
= ( ˜̃F,E)1.

(A2) It is straightforward.

(A3) Now consider that, ( ˜̃Gl, E) = {(ej, (xs, P l
sje

iU lsj))|∀ej ∈ E, xs ∈ X}.
Then, from the definition of complex fuzzy soft subset we have,
( ˜̃F l, E) ≤ ( ˜̃Gl, E) ⇒ plsj ≤ P l

sj and ulsj ≤ U l
sj , for each, s = 1, 2, ..,m, j = 1, 2, .., n and

l = 1, 2, .., k.
Then, we get the result that,
˜̃A
{W1,W2,..,Wk}
WGM (( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)) ≤ ˜̃A

{W1,W2,..,Wk}
WGM (( ˜̃G1, E), ( ˜̃F 2, E), .., ( ˜̃Gk, E)).
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(A4) Based on the properties of weighted geometric mean aggregation operator, it is
straightforward.

7.5 Complex fuzzy soft multi-expert decision-making

Recently, decision-making by using soft set theory has become a common propensity to the
researchers because of its flexible parameter selection process to define an alternative. In
such type of decision-making problems, the main goal is to sort out the best decision
alternative from a bunch of alternatives over some parameters accepted by a single expert or
multiple experts. Consequently, many algorithms [22, 50] have been constructed from
different backgrounds to assess these decision-making under different uncertain
environments. Now, we have solved a complex fuzzy soft set based decision-making
involving multiple experts.

7.5.1 Problem description

Let us consider m alternatives as, X = {x1, x2, .., xm} and n corresponding parameters as,
E = {e1, e2, .., en}. Now assume that, k experts (D = {d1, d2, .., dk}) have been employed
to define these m alternatives over the n considered complex fuzzy parameters. Then, the
provided opinions of the k experts about the alternatives over n parameters have been given
in k complex fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E) as follows:

∀l = 1, 2, .., k, ( ˜̃F l, E) =
{(
ej,

˜̃F l(ej)
)}

=
{(
ej,
(
xs,

˜̃F l
ej

(xs)
))
|∀ej ∈ E, xs ∈ X

}
=
{(
ej,
(
xs/p

l
sje

iulsj

))
|∀ej ∈ E, xs ∈ X

}
.

Tabular form of these k complex fuzzy soft sets is given in 7.5.

Table 7.5: Tabular form of k complex fuzzy soft sets (in general case)
d1, ( ˜̃F 1, E) d2, ( ˜̃F 2, E)

e1 e2 . . . en e1 e2 . . . en

x1 p111e
iu1

11 p112e
iu1

12 . . . p11ne
iu1

1n p211e
iu2

11 p212e
iu2

12 . . . p21ne
iu2

1n

x2 p121e
iu1

21 p122e
iu1

22 . . . p12ne
iu1

2n p221e
iu2

21 p222e
iu2

22 . . . p22ne
iu2

2n

. . . . . .

xm p1m1e
iu1

m1 p1m2e
iu1

m2 . . . p1mne
iu1

mn p2m1e
iu2

m1 p1m2e
iu2

m2 . . . p2mne
iu2

mn
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dk , ( ˜̃Fk, E)

e1 e2 . . . en

.. pk11e
iuk

11 pk12e
iuk

12 . . . pk1ne
iuk

1n

.. pk21e
iuk

21 pk22e
iuk

22 . . . pk2ne
iuk

2n

.. . . .

.. pkm1e
iuk

m1 pkm2e
iuk

m2 . . . pkmne
iuk

mn

From this mathematical illustration, our main objective is to select the best decision alter-
native based on all the associated k complex fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E),..,( ˜̃F k, E).

7.5.2 Optimality criteria
The considered problem of this chapter is a multi-expert decision-making based on complex
fuzzy soft sets. Now, the optimality criteria of this decision-making have been given point
wise in the following:

(a) The optimal alternative will have maximum degree of satisfaction with respect to most
of the associated parameters for every corresponding complex fuzzy soft set.

(b) Optimal alternative should have highest degree of distance from the anti-ideal alterna-
tive and smallest degree of distance from the ideal alternative.

7.5.3 Solution framework of our considered multi-expert

decision-making
Now, we have proposed a stepwise algorithmic approach to solve our considered complex
fuzzy soft set based multi-expert decision-making. Our solution methodology is divided into
four phases as given in Figure 7.2. In Phase I, we have equalized all the decision evaluations
to make them comparable to each other. In Phase II, we have derived the weight of an
expert. Then, in Phase III, a collective complex fuzzy soft set has been constructed as a
resultant representative of all the k complex fuzzy soft sets by using complex fuzzy soft
weighted geometric mean aggregation operator. Finally in Phase IV, the best alternative has
been selected from the collective complex fuzzy soft set.

Algorithm:

Phase I: Equalization of all the decision evaluations
In a real-life based decision-making, not every considered parameter carries the same nature.
Negative character may be subsisted in some considered parameters. Then, to overcome this
unequalness behaviour of the parameters, we have taken complex fuzzy complement (given
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Figure 7.2: Schematic framework of our proposed approach

in Preliminary Section) of all evaluations with respect to every negative parameter so that
the evaluation of every alternative can accomplish the same feature (positive nature).

Step 1. Input alternative set, X = {x1, x2, .., xm} and corresponding parameter set,
E = {e1, e2, .., en}. Input k complex fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E),..,( ˜̃F k, E) provided by
the k experts, D = {d1, d2, .., dk} as given in Table 7.5. Input the primary given weights of

the associated parameters as, W = {w1, w2, .., wn} where, each wj ∈ [0, 1] and
n∑
j=1

wj = 1.

Step 2. Classify all the parameters according to their positive nature and negative nature.
Suppose A and B are the set of positive parameters and set of negative parameters where,
A ∪B = E and A ∩B = φ.

Step 3. Now, take complex fuzzy complement of all the evaluations over every negative
parameter as follows:
∀ej ∈ A, there will be no change in decision evaluation plsje

iulsj of an alternative xs.
∀ej ∈ B, take the complex fuzzy complement of the evaluation plsje

iulsj as, (plsj)
c where, c is

the complex fuzzy complement operator; ∀s = 1, 2, ..,m, j = 1, 2, .., n.

Phase II: Determination of the weight ($(dl)) of an expert dl
In reality, in multi-expert decision-making, all the experts do not provide similar opinion
about the alternatives because of their having different knowledge levels, different choice
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strategies, and different satisfaction levels, which reflects the disparity between their
importance in making a decision about the best alternative. Therefore, it is required to derive
the weight of the experts individually in a multi-expert decision-making problem to obtain a
better decision result. Now, we have derived the weight of an expert dl with respect to
his/her provided complex fuzzy soft set ( ˜̃F l, E).

Step 1. Derivation of the best-approx complex fuzzy soft set
Since, according to the optimality criteria of our considered decision-making problem, final
decision solution will be taken based on the maximum satisfaction of the alternatives with
respect to the parameters over all the k complex fuzzy soft sets therefore, we have
constructed the best-approx complex fuzzy soft set ( ˜̃F+, E) by taking union among all the k
complex fuzzy soft sets since, union of complex fuzzy soft sets takes maximum evaluation
as given in Definition 7.6.

Step 2. Evaluation of the proximity index of an expert dl
The proximity index of an expert dl with respect to his/her associated complex fuzzy soft set
( ˜̃F l, E) is denoted by, PI(dl) and is evaluated as follows:

PI(dl) = Ŝ(( ˜̃F+, E)( ˜̃F l, E)) (7.5)

where, Ŝ indicates the similarity measure of two complex fuzzy soft sets.

Step 3. Measuring the closeness index of an expert dl
The closeness index of an expert dl with respect to his/her corresponding complex fuzzy soft
set ( ˜̃F l, E) is denoted by, CI(dl) and is defined by measuring his/her total similarity degree
with the other experts. Mathematically, it is defined as follows:

CI(dl) =

k∑
l 6=l′ ;l′=1

Ŝ
(

( ˜̃F l, E), ( ˜̃F l
′
, E)

)
k − 1

(7.6)

Step 4. Determination of the weight of an expert dl
Now, the weight of an expert dl with respect to his/her provided complex fuzzy soft set
( ˜̃F l, E) is denoted by, $I(dl) and can be derived from the following equation:

$(dl) =
(PI(dl)⊕ CI(dl))
k∑
l=1

(PI(dl)⊕ CI(dl))
(7.7)

Phase III: Construction of the collective complex fuzzy soft set ( ˜̃F,E)

Now, we have derived a collective complex fuzzy soft set ( ˜̃F,E) as a representation of all
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the k complex fuzzy soft sets with the help of complex fuzzy soft weighted geometric mean
aggregation operator (given in Definition 7.9) as follows:

˜̃A
{$(d1),$(d2),..,$(dk)}
WGM

(
( ˜̃F 1, E), ( ˜̃F 2, E), .., ( ˜̃F k, E)

)
= ( ˜̃F,E)

where, $(dl) is the weight of an expert dl with respect to his/her provided complex fuzzy
soft set ( ˜̃F l, E). Tabular form of the collective complex fuzzy soft set ( ˜̃F,E) has been
provided in Table 7.6.

Table 7.6: Collective complex fuzzy soft set ( ˜̃F,E) (in general case)

e1 e2 . . . en

x1 P11e
iU11 P12e

iU12 . . . P1ne
iU1n

x2 P21e
iU21 P22e

iU22 . . . P1ne
iU1n

. . .

xm Pm1e
iUm1 Pm2e

iUm2 . . . Pmne
iUmn

Phase IV: Selection of the best alternative
This is the last phase of our proposed approach. Here, we have selected the best alternative
based on the collective complex fuzzy soft set ( ˜̃F,E) (given in Table 7.6). This phase
contains the following steps.

Step 1. Determination of combined weight of a parameter ej
Weight of an associated parameter in a decision-making has a significant disposition in prac-
tice. Usually, weight of a parameter is of two types:

• Subjective weight: Subjective weight of a parameter is basically the given weight of a
parameter in a decision-making problem.
W = {w1, w2, .., wn} are the subjective weights (given weights) of the parameters

where, each wj ∈ [0, 1] and
n∑
j=1

wj = 1.

• Objective weight: Objective weight of a parameter can be the derived from the
corresponding decision evaluations.

Each of these two weights has an individual impact on the final decision of a
decision-making problem. Therefore, now we have evaluated a combined weighted value of
an associated parameter by using both the subjective weight and objective weight together.
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Objective weight of a parameter ej:
Objective weight of a parameter ej is denoted by, wObj and is derived by using maximizing
deviation method [159] where, the key idea is, the parameter for which the total deviation in
the evaluations of the alternatives is high, will have highest objective importance or objective
weight for this decision-making. Its mathematical formulation is as follows:

wObj =
1

m(m− 1)
×

m∑
s′=1,s 6=s′

√
1
2

(
(Psj − Ps′j)2 + 1

4π2 (Usj − Ps′j)2
)

m∑
s=1

m∑
s′=1,s 6=s′

√
1
2

(
(Psj − Ps′j)2 + 1

4π2 (Usj − Us′j)2
) (7.8)

Combined weight of a parameter ej:
Now, the combined weight of a parameter ej is denoted by, wCbj and is defined as follows:

wCbj =
α(wj)⊕ (1− α)(wObj )∑n

j=1

(
α(wj)⊕ (1− α)(wObj )

) (7.9)

where, α ∈ [0, 1] is the influence factor.

Step 2. Obtain the ideal alternative and anti-ideal alternative
The ideal alternative is denoted is x̄ and is derived by taking complex fuzzy union (given in
the Preliminary Section) over all the alternatives for every parameter corresponding to the
collective complex fuzzy soft set ( ˜̃F,E) as follows:

x̄ = {
(
e1, (P11e

iU11 ∪ P21e
iU21 ∪ .. ∪ Pm1e

iUm1)
)
,(

e2, (P12e
iU12 ∪ P22e

iU22 ∪ .. ∪ Pm2e
iUm2)

)
, ..,(

en, (P1ne
iU1n ∪ P2ne

iU2n ∪ .. ∪ PmneiUmn)
)
}

=
{(
e1, P̄1e

iŪ1

)
,
(
e2, P̄2e

iŪ2

)
, ..,
(
en, P̄ne

iŪn
)}

(7.10)

In the similarly way, the anti-ideal alternative is denoted is x and is defined by taking
complex fuzzy intersection (given in the Preliminary Section) over all the alternatives for
every parameter corresponding to the collective complex fuzzy soft set ( ˜̃F,E) as follows:

x = {
(
e1, (P11e

iU11 ∩ P21e
iU21 ∩ .. ∩ Pm1e

iUm1)
)
,(

e2, (P12e
iU12 ∩ P22e

iU22 ∩ .. ∩ Pm2e
iUm2)

)
, ..,(

en, (P1ne
iU1n ∩ P2ne

iU2n ∩ .. ∩ PmneiUmn)
)
}

=
{(
e1, P 1e

iU1
)
,
(
e2, P 2e

iU2
)
, ..,
(
en, P ne

iUn
)}

(7.11)

Step 3. Derivation of the separation levels of an alternative xs from x̄ and x
The separation levels of an alternative xs from the corresponding ideal alternative (x̄) and the
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anti-ideal alternative (x) are denoted by, D(xs/x̄) and D(xs/x) and are defined as follows:
∀s = 1, 2, ..,m

D(xs/x̄) =

(
1

2
{
(
wCb1 × (Ps1 − P̄1)2 + wCb2 × (Ps2 − P̄2)2 + ..+ wCbn × (Psn − P̄n)2

)
+

1

4π2

(
wCb1 × (Us1 − Ū1)2 + wCb2 × (Us2 − Ū2)2 + ..+ wCbn × (Usn − Ūn)2

)
}
)1/2

D(xs/x) =

(
1

2
{
(
wCb1 × (Ps1 − P 1)2 + wCb2 × (Ps2 − P 2)2 + ..+ wCbn × (Psn − P n)2

)
+

1

4π2

(
wCb1 × (Us1 − U1)2 + wCb2 × (Us2 − U2)2 + ..+ wCbn × (Usn − Un)2

)
}
)1/2

Step 4. Derive the ranking index of an alternative xs
Finally, the ranking index of an alternative xs is denoted by, R̃(xs) and is derived by the
following equation:

R̃(xs) =
D(xs/x)

D(xs/x) +D(xs/x̄)
; s = 1, 2, ..,m (7.12)

Step 5. Determine the best alternative based on the ranking indices
The alternative with maximum ranking index (R̃) will be selected as the optimal alternative
or best alternative for this multi-expert decision-making.

If, this is not unique then, we have to select any one of them as an optimal solution.

Example 7.3. Let the universal set as, X = {x1, x2, x3, x4} and the parameter set as,
E = {e1, e2, e3} which are in complex fuzzy sense where, e1 and e2 are the positive
parameters and e3 is the negative parameter. Now, consider three complex fuzzy soft sets
( ˜̃F 1, E), ( ˜̃F 2, E) and ( ˜̃F 3, E) over X provided by three experts, D = {d1, d2, d3} as given
in Tables 7.7, 7.8 and 7.9.
Assume that, the given weights or subjective weights of the parameters for this multi-expert
decision-making are, W = {w1 = 0.40, w2 = 0.37, w3 = 0.23}. Now, we have solved this
complex fuzzy soft multi-expert decision-making by applying our approach.

Table 7.7: CFSS ( ˜̃F 1, E) (Example 7.3)
e1 e2 e3

x1 0.8eiπ/2 0.3eiπ/2 0.5eiπ

x2 0.5ei7π/4 0.6ei3π/2 0.4ei0

x3 1ei4π/3 0.7ei3π/2 0.6eiπ

x4 0.7ei3π/4 0.8ei2π/3 0.6ei7π/4

Table 7.8: CFSS ( ˜̃F 2, E) (Example 7.3)
e1 e2 e3

x1 1eiπ/4 0.5ei2π/3 0.4ei3π/2

x2 0.4ei3π/2 0.6ei4π/3 0.8eiπ

x3 0.7ei2π 0.1eiπ/2 0.2ei2π/3

x4 1eiπ 0.6eiπ/2 0.5ei5π/3

162



7.5. COMPLEX FUZZY SOFT MULTI-EXPERT DECISION-MAKING

Table 7.9: CFSS ( ˜̃F 3, E) (Example 7.3)
e1 e2 e3

x1 1eiπ/4 0.8eiπ/5 0.3ei3π/2

x2 0.6eiπ 0.6ei2π/3 0.3eiπ/2

x3 0.4eiπ 0.7ei2π/3 0.7eiπ

x4 0.7eiπ/6 0.8eiπ/2 0.7ei7π/4

Solution:
Phase I:
Step 1. Three complex fuzzy soft sets have been given in Tables 7.7, 7.8 and 7.9.
Step 2. Since, e3 is a negative parameter therefore, before solving this problem, we have
equalized all the evaluations by taking the complex fuzzy complement of every evaluation of
every alternative over e3 parameter of each of the complex fuzzy soft sets as given in Tables
7.10, 7.11 and 7.12.

Table 7.10: CFSS ( ˜̃F 1, E) after

equalization (Example 7.3)
e1 e2 e3

x1 0.8eiπ/2 0.3eiπ/2 0.5eiπ

x2 0.5ei7π/4 0.6ei3π/2 0.6ei2π

x3 1ei4π/3 0.7ei3π/2 0.4eiπ

x4 0.7ei3π/4 0.8ei2π/3 0.4eiπ/4

Table 7.11: CFSS ( ˜̃F 2, E) after

equalization (Example 7.3)
e1 e2 e3

x1 1eiπ/4 0.5ei2π/3 0.6eiπ/2

x2 0.4ei3π/2 0.6ei4π/3 0.2eiπ

x3 0.7ei2π 0.1eiπ/2 0.8ei4π/3

x4 1eiπ 0.6eiπ/2 0.5eiπ/3

Phase II:
Step 1. By using Definition 7.6, best-approx complex fuzzy soft set ( ˜̃F+, E) is given in
Table 7.13.
Step 2. Now, by using Equation 7.5, proximity indices of the experts are,
PI(d1) = 0.91; PI(d2) = 0.86; PI(d3) = 0.79.
Step 3. By applying Equation 7.6, closeness indices of the experts are,

Table 7.12: CFSS ( ˜̃F 3, E) after equalization (Example 7.3)
e1 e2 e3

x1 1eiπ/4 0.8eiπ/5 0.7eiπ/2

x2 0.6eiπ 0.6ei2π/3 0.7ei3π/2

x3 0.4eiπ 0.7ei2π/3 0.3eiπ

x4 0.7eiπ/6 0.8eiπ/2 0.3eiπ/4
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Table 7.13: Best-approx complex fuzzy soft set ( ˜̃F+, E) (Example 7.3)
e1 e2 e3

x1 1eiπ/2 0.8ei2π/3 0.7eiπ

x2 0.6ei7π/4 0.6ei3π/2 0.7ei2π

x3 1ei2π 0.7ei3π/2 0.8ei4π/3

x4 1eiπ 0.8ei2π/3 0.6eiπ/3

CI(d1) = 0.82; CI(d2) = 0.80; CI(d3) = 0.78.
Step 4. Then, with the help of Equation 7.7, weights of the experts are as follows:
$(d1) = 0.35; $(d2) = 0.33; $(d3) = 0.32.
Phase III:
Now, by using complex fuzzy soft weighted geometric mean aggregation operator, the
collective complex fuzzy soft set ( ˜̃F,E) from the three complex fuzzy soft sets ( ˜̃F 1, E),
( ˜̃F 2, E), ( ˜̃F 3, E) (Table 7.10, Table 7.11, 7.12) has been provided in Table 7.14.

Table 7.14: Collective complex fuzzy soft set ( ˜̃F,E) (Example 7.3)
e1 e2 e3

x1 0.92ei0.34π 0.49ei0.46π 0.59ei0.68π

x2 0.49ei0.43π 0.60ei1.18π 0.44ei1.51π

x3 0.66ei1.45π 0.37ei0.90π 0.46ei1.11π

x4 0.79ei0.64π 0.73ei0.56π 0.39ei0.28π

Phase IV:
Step 1. By using Equation 7.8, objective weights of the parameters are,
wOb1 = 0.36, wOb2 = 0.29, wOb3 = 0.35.
Then, from Equation 7.9, combined weights of the parameters ar as follows,
wCb1 = 0.38;wCb2 = 0.33;wCb3 = 0.29 (α = 0.5 has been considered here).
Step 2. Then, base on Table 7.14, ideal alternative and anti-ideal alternative for this
multi-expert decision-making are, x̄ = {0.92ei1.45π, 0.73ei1.18π, 0.59ei1.51π};
x = {0.49ei0.34π, 0.37ei0.46π, 0.39ei0.28π}.
Step 3. After that, separation levels of an alternative from x̄ and x with respect to the
collective complex fuzzy soft set ( ˜̃F,E) are given below:
D(x1/x̄) = 0.3382; D(x2/x̄) = 0.2030; D(x3/x̄) = 0.2138; D(x4/x̄) = 0.3330.
D(x1/x) = 0.2216; D(x2/x) = 0.3765; D(x3/x) = 0.3125; D(x4/x) = 0.2078.
Step 4. Then, the final ranking index of each of the alternatives is,
R̃(x1) = 0.3959; R̃(x2) = 0.6497; R̃(x3) = 0.5938; R̃(x4) = 0.3842.
Step 5. So, the ranking order of the associated alternatives is, x2 > x3 > x1 > x4.
Hence, it can be concluded that, x2 is the best decision alternative for this multi-expert
decision-making.
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7.6 Experimental analysis

A case Study on medical science.
Usually, one symptom may be the cause of various diseases. For instance, the symptom
fever is a common symptom of several different diseases such as, acute viral hepatitis,
influenza, peptic ulcer, food poisoning, etc. Moreover, for a particular disease, multiple
symptoms may be responsible. Therefore, accurate diagnosis and treatment are very
emergent in medical diagnosis system.

In reference [22], Basu et al. developed a balanced solution approach to detect exact
affected disease of a patient by using fuzzy soft set theory. Moreover, Tang [155], Li et
al. [99] and Wang et al. [161] proposed some disease diagnosis decision-making algorithms
through fuzzy soft set theory. In these existing approaches, we have seen that, authors only
focused on the belongingness degree of symptom to a patient. But, in a disease diagnosis
system, how long a symptom is seen in the patient is also an inescapable information.
Therefore, to find out the exact solution of a disease diagnosis problem, both of the
information of a symptom such as, time duration of a symptom and belongingness degree
are necessary.

Then in order to fulfill this research gap, we have used complex fuzzy soft set
framework instead of fuzzy soft set framework so that, belongingness degree of a symptom
and time duration of the symptom can be taken together via complex fuzzy membership in
terms of its amplitude term and phase term. In the following, we have illustrated a disease
diagnosis decision-making problem based on complex fuzzy soft set theory.

Example 7.4. Consider five diseases as, malaria, pneumonia, gastric ulcer, viral fever,
typhoid. Now, some common related symptoms of these five diseases are, headache,
stomach pain, cough, chest pain, temperature, weight loss. Consider that, a set of three
decision makers or experts have been assigned to conduct this disease diagnosis
decision-making. Now, to express the opinions of the three experts, we have used complex
fuzzy soft set theory where, ‘belongingness degree of a symptom’ represents by amplitude
part and ‘time period of the symptom’ represents by phase part.

Now, to express this problem mathematically, assume that,
X = {malaria(x1), pneumonia(x2), gastric ulcer(x3), viral fever(x4), typhoid(x5)} be
a universal set and E = {headache(e1), stomach pain(e2), cough(e3), chest pain(e4),
temperature(e5), weight loss(e6)} be a parameter set each of which is in complex fuzzy
sense. Let, D = {d1, d2, d3} be the three associated experts. Now, based the opinions of the
three experts, the three complex fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E) and ( ˜̃F 3, E) have been
given in Tables 7.15, 7.16 and 7.17 respectively.
All the above data have been considered based on 15 consecutive days. Then, to define
every time duration data in the interval [0, 2π], 2π has been assumed here instead of 15 days
i.e., with respect to a parameter e1 for the expert d1, the evaluation 0.8eiπ/4 of an alternative
x1 indicates that, belongingness degree of the symptom headache e1 over the disease malaria
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Table 7.15: CFSS ( ˜̃F 1, E) given by d1 (Example 7.4)
e1 e2 e3 e4 e5 e6

x1 0.8eiπ/4 0.9eiπ 1eiπ/2 0.8eiπ 0.3eiπ/6 0.8ei2π/3

x2 0.4ei3π/2 0.5eiπ 0.5ei4π/3 0.4eiπ/2 0.6eiπ 0.6eiπ

x3 0.5ei7π/4 0.6ei2π 0.7ei2π 0.4ei2π 0.5ei5π/3 0.5ei2π

x4 0.6eiπ/2 0.8eiπ/2 0.8eiπ 0.8eiπ/6 0.5eiπ 0.7eiπ/4

x5 0.1ei3π/2 0.4ei2π 0.3ei3π/2 1ei4π/3 0.7eiπ 0.3ei3π/2

Table 7.16: CFSS ( ˜̃F 2, E) given by d2 (Example 7.4)
e1 e2 e3 e4 e5 e6

x1 0.7eiπ/2 0.8eiπ/2 0.6eiπ 0.7ei3π/2 0.7eiπ/4 0.9eiπ

x2 0.6eiπ/2 0.7ei2π/3 0.7eiπ 0.6ei4π/3 0.6eiπ 0.8eiπ/2

x3 0.5ei3π/2 0.5ei3π/2 0.7ei7π/4 0.25ei7π/5 0.45ei2π 0.4ei2π

x4 0.6ei2π/3 0.4ei4π/5 0.6eiπ/2 0.5eiπ/4 0.6eiπ/5 0.7eiπ

x5 0.5ei7π/4 0.6ei6π/5 0.4ei4π/3 0.3eiπ 0.5eiπ 0.5ei2π/3

(x1) is 0.8 and the time period of the symptom headache e1 for this disease is approx 2 days
(π/4).

Nature of the considered parameters:
Since, in this disease diagnosis decision-making, with respect to each of the considered
parameters, highest rating of an alternative is best i.e., with respect to each of the symptoms,
higher evaluation of a disease indicates that, the patient has abundant chance to be infected
by this disease. Therefore, it can be concluded that, in this problem, all the considered
parameters are in positive nature.
Weights of the parameters:
Assume that, give weight to each of the parameters (symptom) is equal i.e.,
W = {1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
}.

Now, our target is to detect the disease by which the patient is suffered.
Solution: This is a complex fuzzy soft set based multi-expert decision-making. Now, we
will handle this disease diagnosis decision-making problem by applying our algorithm.
Phase I: Since, all the parameters are in positive sense, therefore, we have skipped Phase I.
Phase II:
Step 1. The best-approx complex fuzzy soft set has been given in Table 7.18.
Step 2. By using Equation 7.5, proximity indices of the experts are as follows:
PI(d1) = 0.91, PI(d2) = 0.89, PI(d3) = 0.86.
Step 3. Then, the closeness indices of the experts are given below:
CI(d1) = 0.82, CI(d2) = 0.83, CI(d3) = 0.82.
Step 4. Finally, by using Equation 7.7, weights of the experts are as follows:
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Table 7.17: CFSS ( ˜̃F 3, E) given by d3 (Example 7.4)
e1 e2 e3 e4 e5 e6

x1 0.9eiπ 0.4eiπ/5 0.8eiπ/4 0.5eiπ/3 0.7eiπ/2 0.8eiπ

x2 0.4ei2π 0.7eiπ 0.3eiπ/2 0.4eiπ/4 0.7ei3π/2 0.5eiπ

x3 0.6ei3π/2 0.5ei4π/3 0.5ei2π 0.7ei2π 0.5ei5π/3 0.4ei7π/4

x4 0.6eiπ 0.5eiπ/2 0.4eiπ/5 0.6eiπ/4 0.8eiπ 0.2eiπ/2

x5 0.5ei2π 0.7eiπ 0.5ei3π/2 0.4eiπ 0.3eiπ 0.7eiπ

Table 7.18: Best-approx complex fuzzy soft set ( ˜̃F+, E) (Example 7.4)
e1 e2 e3 e4 e5 e6

x1 0.9eiπ 0.9eiπ 1eiπ 0.8ei3π/2 0.7eiπ/2 0.9eiπ

x2 0.6ei2π 0.7eiπ 0.7ei4π/3 0.6ei4π/3 0.7ei3π/2 0.8eiπ

x3 0.6ei7π/4 0.6ei2π 0.7ei2π 0.7ei2π 0.5ei5π/3 0.5ei2π

x4 0.6eiπ 0.8ei4π/5 0.8eiπ 0.8eiπ/4 0.8eiπ 0.7eiπ

x5 0.5ei2π 0.7ei2π 0.5ei3π/2 1ei4π/3 0.7eiπ 0.7ei3π/2

$I(d1) = 0.34, $I(d2) = 0.33, $I(d3) = 0.33.
Phase III:
Based on our proposed complex fuzzy soft weighted geometric mean aggregation operator
(given in Equation 7.4), the collective complex fuzzy soft set ( ˜̃F,E) as a representative of
all the three complex fuzzy soft sets ( ˜̃F 1, E), ( ˜̃F 2, E) and ( ˜̃F 3, E) has been given in Table
7.19.

Table 7.19: Collective complex fuzzy soft set ( ˜̃F,E) (Example 7.4)
e1 e2 e3 e4 e5 e6

x1 0.80ei0.58π 0.70ei0.57π 0.80ei0.58π 0.67ei0.94π 0.56ei0.30π 0.83ei0.89π

x2 0.47ei1.34π 0.63ei0.89π 0.50ei0.95π 0.47ei0.69π 0.63ei1.16π 0.63ei0.84π

x3 0.53ei1.58π 0.53ei1.62π 0.63ei1.92π 0.45ei1.80π 0.48ei1.78π 0.43ei1.92π

x4 0.60ei0.72π 0.57ei0.60π 0.60ei0.57π 0.64ei0.22π 0.63ei0.74π 0.54ei0.58π

x5 0.36ei1.75π 0.56ei1.41π 0.40ei1.44π 0.57ei1.11π 0.50eiπ 0.50ei1.06π

Phase IV:
Step 1. By using Equation 7.8, objective weights of the parameters are,
wOb1 = 0.28; wOb2 = 0.28; wOb3 = 0.30; wOb4 = 0.29; wOb5 = 0.25; wOb6 = 0.27.
Then, the combined weights of the parameters are, wCb1 = 0.17; wCb2 = 0.14; wCb3 = 0.18;
wCb4 = 0.18; wCb5 = 0.16; wCb6 = 0.17 (α = 0.5 has been considered).
Step 2. Now, the ideal and anti-ideal alternatives based on the collective complex fuzzy soft
set ( ˜̃F,E) are as follows:
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x̄ = (0.80ei1.75π, 0.70ei1.62π, 0.80ei1.92π, 0.67ei1.80π, 0.63ei1.78π, 0.83ei1.92π);
x = (0.36ei0.58π, 0.53ei0.57π, 0.40ei0.57π, 0.45ei0.22π, 0.48ei0.30π, 0.43ei0.58π).
Step 3. Then, the separation levels of an alternative from ideal and anti-ideal alternatives
over the collective complex fuzzy soft set ( ˜̃F,E) (Table 7.19) are as follows:
D(x1/x̄) = 0.4149; D(x2/x̄) = 0.3449; D(x3/x̄) = 0.1766; D(x4/x̄) = 0.4617;
D(x5/x̄) = 0.2705.
D(x1/x) = 0.2268; D(x2/x) = 0.2154; D(x3/x) = 0.4904; D(x4/x) = 0.1585;
D(x5/x) = 0.2705.
Step 4. So, with the help of Equation 7.12, ranking indices of the alternatives are,
R̃(x1) = 0.3535; R̃(x2) = 0.3844; R̃(x3) = 0.7352; R̃(x4) = 0.2555; R̃(x5) = 0.4497.
Then from the above ranking values, final ranking order of the corresponding alternatives is,
x3 > x5 > x2 > x1 > x4.
Hence, it can be concluded that, the patient is affected by the disease gastric ulcer (x3).

7.7 Comparative discussion and sensitivity analysis

7.7.1 Comparative analysis
In this section, a comparative analysis has been interpreted to examine the validity and
effectiveness of our complex fuzzy soft multi-expert decision-making approach. Since, in
the existing literature, no algorithm exists for solving complex fuzzy soft multi-expert
decision-making problems therefore, in order to verify the validity and effectiveness of our
proposed approach, we have derived the ranking order of the alternatives by using our
proposed approach when each phase term is equals to 0 i.e., when ulsj = 0 then, the
corresponding complex fuzzy soft sets are transformed into fuzzy soft sets. So, then we can
compare our proposed approach with the fuzzy soft set based algorithms (Roy and Maji’s
approach [139], Feng’s approach [61], Alcantud’s approach [4]).

Comparison based on Example 7.3

Now, we have derived the best decision solution of Example 7.3 by using different methods
including our proposed approach when, each of the phase terms is equals to 0. i.e., each
ulsj = 0.

• Solution by using our proposed approach

Firstly, put each ulsj = 0 in the given Tables 7.7, 7.8 and 7.9. After that, values have been
given in Tables 7.20, 7.21 and 7.22.
Step 1. Since, e3 is a negative parameter therefore, by using fuzzy complement operator
(given in Chapter 2), we have equalized all the evaluations as given in Tables 7.23, 7.24 and
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Table 7.20: CFSS

( ˜̃F 1, E) (Example 7.3) (each

ulsj = 0)

e1 e2 e3

x1 0.8 0.3 0.5

x2 0.5 0.6 0.4

x3 1 0.7 0.6

x4 0.7 0.8 0.6

Table 7.21: CFSS

( ˜̃F 2, E) (Example 7.3) (each

ulsj = 0)

e1 e2 e3

x1 1 0.5 0.4

x2 0.4 0.6 0.8

x3 0.7 0.1 0.2

x4 1 0.6 0.5

Table 7.22: CFSS

( ˜̃F 3, E) (Example 7.3) (each

ulsj = 0)

e1 e2 e3

x1 1 0.8 0.3

x2 0.6 0.6 0.3

x3 0.4 0.7 0.7

x4 0.7 0.8 0.7

7.25.

Table 7.23: ( ˜̃F 1, E) after

equalization (each ulsj = 0)

e1 e2 e3

x1 0.8 0.3 0.5

x2 0.5 0.6 0.6

x3 1 0.7 0.4

x4 0.7 0.8 0.4

Table 7.24: ( ˜̃F 2, E) after

equalization (each ulsj = 0)

e1 e2 e3

x1 1 0.5 0.6

x2 0.4 0.6 0.2

x3 0.7 0.1 0.8

x4 1 0.6 0.5

Table 7.25: ( ˜̃F 3, E) after

equalization (each ulsj = 0)

e1 e2 e3

x1 1 0.8 0.7

x2 0.6 0.6 0.7

x3 0.4 0.7 0.3

x4 0.7 0.8 0.3

Step 2. Weight of the experts are, $I(d1) = 0.34; $I(d2) = 0.32; $I(d3) = 0.34.
Step 3. Then, the collective complex fuzzy soft set ( ˜̃F,E) has been given in Table 7.26.

Table 7.26: Collective complex fuzzy soft set
e1 e2 e3

x1 0.93 0.53 0.60

x2 0.50 0.60 0.51

x3 0.70 0.51 0.49

x4 0.80 0.74 0.40

Step 4. Now, the combined weights of the parameters are,
wCb1 = 0.46; wCb2 = 0.27; wCb3 = 0.22.
Step 5. Then, the ideal and anti-ideal alternatives are,
x̄ = {0.93, 0.74, 0.60}; x = {0.50, 0.51, 0.40}.
Step 6. After that, ranking indices of the alternatives are,
R̃(x1) = 0.72; R̃(x2) = 0.19; R̃(x3) = 0.40; R̃(x4) = 0.65.
So, from the above values, final ranking order of the alternatives is, x1 > x4 > x3 > x2.

• Solution by using Roy and Maji’s approach [139]

169



CHAPTER 7. APPLICATION OF COMPLEX FUZZY SOFT SETS IN MEDICAL
DIAGNOSIS SYSTEM THROUGH A SIMILARITY MEASURE APPROACH

Step 1. Now, by using minimum as AND operator, the resultant fuzzy soft set (F,E) from
the three fuzzy soft sets (Tables 7.23, 7.24, 7.25) has been given in Table 7.27. Since, w1 =
0.40;w2 = 0.37;w3 = 0.23 are the given weights of the parameters, we have just multiplied
this weights to the associated evaluations as given in Table 7.28.
Step 2. Then, the comparison 4× 4 matrix has been given in Table 7.29.

Table 7.27: Resultant

fuzzy soft set (F,E)
e1 e2 e3

x1 0.8 0.3 0.5

x2 0.4 0.6 0.2

x3 0.4 0.1 0.3

x4 0.7 0.6 0.3

Table 7.28: Weighted

resultant fuzzy soft set
e1 e2 e3

x1 0.32 0.11 0.12

x2 0.16 0.22 0.05

x3 0.16 0.04 0.07

x4 0.28 0.22 0.07

Step 3. Now, row sum, column sum and score value of every alternative have been given in
Table 7.29.

Table 7.29: Comparison table
x1 x2 x3 x4 Row sum Column sum Score value

x1 3 2 3 2 10 5 5

x2 1 3 1 1 6 9 -3

x3 0 2 3 0 5 10 -5

x4 1 2 3 3 9 6 3

Step 4. Then, the final ranking order of the associated alternatives is, x1 > x4 > x2 > x3.

• Solution by using Feng’s approach [61]

In Table 7.28, we have given the weighted resultant fuzzy soft set (F,E). Then, the
corresponding top-level soft set and mid-level soft set are given in Tables 7.30 and 7.31.

Table 7.30: Top-level soft set
e1 e2 e3 Choice value

x1 1 0 1 2

x2 0 1 0 1

x3 0 0 0 0

x4 0 1 0 1

Table 7.31: Mid-level soft set
e1 e2 e3 Choice value

x1 0.32 0.11 0.12 2

x2 0.16 0.22 0.05 1

x3 0.16 0.04 0.07 0

x4 0.28 0.22 0.07 2

So, by using top-level soft set, final ranking order of the corresponding alternatives is,
x1 > x2 = x4 > x3 and by using mid-level soft set, final ranking order of the corresponding
alternatives is, x1 = x4 > x2 > x3.
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• Solution by using Alcantud’s approach [4]

Step 1. By using product as AND operator, resultant fuzzy soft set has been given in Table
7.32. Since, w1 = 0.40;w2 = 0.37;w3 = 0.23 are the given weights of the parameters, the
corresponding weighted resultant fuzzy soft set has been given in Table 7.33.

Table 7.32: Resultant

fuzzy soft set (F,E)
e1 e2 e3

x1 0.80 0.12 0.21

x2 0.12 0.22 0.08

x3 0.28 0.05 0.10

x4 0.49 0.38 0.06

Table 7.33: Weighted

resultant fuzzy soft set
e1 e2 e3

x1 0.32 0.04 0.05

x2 0.05 0.08 0.02

x3 0.11 0.02 0.02

x4 0.20 0.14 0.01

Step 2. Then, the comparison table and the corresponding row sum, column sum and score
values of the alternatives have given in Table 7.34.

Table 7.34: Comparison table
x1 x2 x3 x4 Row sum Column sum Score value

x1 0 1.44 1.40 1.18 4.02 0.99 3.03

x2 0.28 0 0.43 0.20 0.91 2.03 -1.12

x3 0 0.16 0 0.02 0.18 3 -2.82

x4 0.71 0.43 1.17 0 2.31 1.40 0.99

Step 3. So, based on the above score values, ranking order of the associated alternatives is,
x1 > x4 > x2 > x3.

Comparison based on Example 7.4

Now, we have derived the best decision solution of Example 7.4 by using different methods
including our proposed approach when, each of the phase terms is equals to 0. i.e., each
ulsj = 0.

• Solution by using our proposed approach

The final ranking order of the associated alternatives is, x1 > x4 > x2 > x3 > x5.

• Solution by using Roy and Maji’ approach [139]

The final ranking order of the associated alternatives is, x1 > x2 > x4 = x3 > x5.
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• Solution by using Feng’s approach [61]

By using top-level soft set, final ranking order of the associated alternatives is,
x1 > x2 > x3 = x4 > x5.
By using mid-level soft set, final ranking order of the associated alternatives is,
x1 = x3 = x4 > x2 > x5.

• Solution by using Alcantud’s approach [4]

The final ranking order of the associated alternatives is, x1 > x4 > x2 > x3 > x5.

Discussion

The above resulting values have been summarized in Tables 7.35 and 7.36.

Table 7.35: Comparison of different methods based on Example 7.3
Methods Values of the phase terms Final solution

Our proposed approach not all ulsj 6= 0 x2

Our proposed approach all ulsj = 0 x1

Roy and Maji’s approach [139] all ulsj = 0 x1

Feng’s method [61] (by using top-level soft set) all ulsj = 0 x1

Feng’s method [61] (by using mid-level soft set) all ulsj = 0 x1, x4

Alcantud’s approach [4] all ulsj = 0 x1

Table 7.36: Comparison of different methods based on Example 7.4
Methods Values of the phase terms Final solution

Our proposed approach not all ulsj 6= 0 x3

Our proposed approach all ulsj = 0 x1

Roy and Maji’s approach [139] all ulsj = 0 x1

Feng’s method [61] (by using top-level soft set) all ulsj = 0 x1

Feng’s method [61] (by using mid-level soft set) all ulsj = 0 x1, x3, x4

Alcantud’s approach [4] all ulsj = 0 x1

From Table 7.35 we have seen that, when all ulsj = 0, the final decision solution of Example
7.3 by using our proposed approach is x1. Moreover, since, the value 0 of each of the phase
terms (ulsj = 0) indicates that, all the corresponding complex fuzzy evaluations are
transformed into fuzzy evaluations (for ulsj = 0, plsje

iulsj = plsj) therefore, we can apply
different types of fuzzy soft set based approaches on this decision-making problem by
putting 0 in each ulsj . Then it is observed that, by using three fuzzy soft set based approaches
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(Roy and Maji’s approach [139], Feng’s method [61] and Alcantud’s approach [4]), the
solution is x1 which is not differed from the solution by our proposed approach when each
ulsj = 0. Besides, based on Table 7.36 we have seen that, in Example 7.4, when each
ulsj = 0, then the solution (alternative x1) by our proposed approach is same with the
solution (alternative x1) by each of the other three fuzzy soft set based approaches (Roy and
Maji’s approach [139], Feng’s method [61], Alcantud’s approach [4]). So, it can be
concluded that, when each ulsj = 0, the result of our proposed approach is same with the
existing approaches including, Roy and Maji’s approach [139], Feng’s method [61],
Alcantud’s approach [4], etc. which proves the validity of our proposed approach.

Further, we have also seen that, in each of the two examples (Example 7.3 and Example
7.4), we have received two different solutions for two different situations such as, when
not all ulsj 6= 0 and when all ulsj = 0. For instance, in the case of Example 7.4, when,
we have considered only the information ‘belongingness degree of a symptom’ (which has
been expressed through amplitude part plsj) i.e., when we have taken each ulsj = 0 then, by
using each of the approaches including our proposed approach, it is obtained that, the patient
is affected by the malaria (x1) disease. But, when ‘time duration of a symptom’ (which
has been expressed through phase part ulsj) has been taken together with the information
‘belongingness of a symptom’, then we can not apply the other three approaches such as, Roy
and Maji’s approach [139], Feng’s method [61], Alcantud’s approach [4]. In that case, our
proposed approach can only able to solve the problem. Then, it has been seen that, the patient
is affected by the disease gastric ulcer (x3). So, when, we have considered two information
‘belongingness degree’ and ‘time duration’ of a symptom together instead of only the single
information ‘belongingness degree’ of a symptom then, the final result may be varied which
proves the effectiveness of our proposed approach.

Hence, from the aforementioned discussions, it can be concluded that, our approach
is more flexible and has a commendable efficiency in solving multi-expert decision-making
problems especially in disease diagnosis decision-making.

7.7.2 Sensitivity analysis

In our algorithm, we have used an influence factor α ∈ [0, 1] in deriving the combined
weight wCbj of a parameter ej as given in Equation 7.9 by which objective weight (wObj ) and
given weight (wj) (subjective weight) of parameter have been considered together. Actually,
combined weight of the parameter indicates its importance in selecting the final solution.
Now, by changing different values of α in the interval [0, 1], we have investigated its effect
on final ranking order of the associated alternatives as well as on the ranking order of the
associated parameters. For different values of α, combined weights of the parameters have
been given in Figures 7.3 and 7.4.

From Figure 7.4 it has been observed that, in Example 7.4, final ranking order of the
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parameters based on its combined weights and final ranking order of the associated
alternatives based on its ranking indices remains same whether we take different values of α
in the interval [0, 1]. But, in Example 7.3, as given in Figure 7.3, it has been seen that, the
final ranking order of the parameters based on its combined weights is, e1 > e3 > e2 for any
value of α in the interval [0, 0.3) but after the value 0.3, this ranking order of the parameters
has been changed to e1 > e2 > e3. Moreover, it is also observed that, up to the value 0.7 of
α, ranking order of the associated alternatives is, x2 > x3 > x1 > x4 and after the value 0.7,
the ranking order of the associated alternatives has been slightly changed to
x2 > x3 > x4 > x1.

So, from this discussion it can be concluded that, changing the value of the influence
factor α ∈ [0, 1] can effect on the final ranking order of the parameters and the final ranking
order of the associated alternatives. Moreover, since, by using the parameter α, objective
weight (wObj ) and subjective weight (given weight) (wj) of a parameter have been considered
together in deriving its combined weight wCbj , so the worth of the objective weight (wObj )
and the worth of the subjective weight (wj) can be altered according to the requirement of a
decision-making problem. Therefore, our approach is stable and more realistic and
reasonable.

7.8 Conclusion
This chapter proposes a methodological approach for solving multi-expert decision-making
by using complex fuzzy soft set theory. The proposed approach has been used here in a
disease diagnosis decision-making problem. Major contributions in this chapter is as follows:

• Firstly, we have constructed a new ratio similarity measure approach to complex fuzzy
sets and complex fuzzy soft sets.

• Secondly, we have defined the axiomatic definition of aggregation operation for
complex fuzzy soft sets and then, we have introduced the notion of complex fuzzy soft
weighted geometric mean aggregation operator to aggregate multiple complex fuzzy
soft sets.

• Finally, a novel a decision-making algorithm has been proposed to solve complex
fuzzy soft set based multi-expert decision-making where, the main highlighted steps
are, derivation of the weight of an expert, derivation of the combined weight of a
parameter and selection of the best alternative. In particular, the combined weight of
an associated parameter has been derived by integrating its subjective weight and
objective weight through an influenced factor(α).

• Further, our proposed decision-making approach has been applied in a medical disease
diagnosis decision-making problem.
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Figure 7.3: Sensitivity analysis based on α for Example 7.3
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Figure 7.4: Sensitivity analysis based on α for Example 7.4
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Since, complex fuzzy soft set is a newly proposed mathematical approach, so for further
research, one can explore some well known algorithms such as, AHP (analytical hierarchy
process) method, FUCOM (full consistency method) method, DEMATEL (decision-making
trial and evaluation laboratory) method, etc. through this newly proposed approach.
Moreover, one can work on its other generalizations like, complex intuitionsitic fuzzy soft
set, complex neutrosophic soft set, etc. to solve more real-life related problems.
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