General Discussion

The present study made a multidisciplinary and multifaceted approach to delve into the species specific characters of two Crinum species. The purpose was to scrutinize the nature and extent of similarity and dissimilarity of two congeneric species, C. asiaticum and C. latifolium and also to visualize the range of different traits of each species by studying the features at infraspecific level. In turn, infraspecific characterization if work out any subtle difference among the individuals of different localities, considered as provenances, would facilitate practicing selection in search of any desirable feature.

The morphological, anatomical and pharmacognostic studies for the provenances of both the species of Crinum L. have shown much similarities with certain differences. Diversities are mainly related to the plant height, bulb shape, size, weight, leaf size, width, nature of inflorescence, flower shape, size, colour of perianth, leaf anatomical features, vascular bundle concerning number of xylem and phloem strands. In intraspecific consideration highest plant height of 197.00 cm in Paschim Medinipur provenance of C. asiaticum was found quite contrast with that of Mungpoo provenance, which was of $22,28 \mathrm{~cm}$ heights. Similarly Purba medinipur provenance of C latifolium having highest height of 93.80 cm is quite greater than the Shilong provenance of lowest height of 30.96 cm . Difference in bulb character has also been found remarkable and for the provenances of C. asiaticum three groups can be formed as i) larger round neck, ii) narrow round neck, iii) absent of neck. Among the eight two provenances namely Shillong and Mungpoo have no neck in the bulb. And out of eight provenances only Shillong and Mungpooare of globose shaped bulb, rest provenances are of ovate shape. North 24 Paraganas provenance of this species has the highest scape height and number of flower per scape. In case of C. latifolium among the ten five

[^0]provenences namely Gangtok, Kolkata, Paschim medinipur, Purba medinipur and Shilong have no neck in the bulb. Whereas, Bankura and Odisha have narrow round neck, narrow flatten neck is present in Nadia contrast of it Asssam consist large flatten neck and highly enlarge round neck found in Kashmir.

The leaf anatomy of C. asiaticum has shown the deviation only in two provenances on shape and the number of the vascular bundle present in leaf. Regarding root anatomical study only North 24 Paraganas provenance contain highest number of xylem strand in the vascular bundle. Similarly the leaf anatomy of C. latifolium has shown the deviation among six provenences in number of vascular bundle. Regarding root anatomical study only Odisha shows highest number of xylem strand in the vascular bundle. Diversities, in this regard, have been noticed much in case of C. latifolium in comparison with C. asiaticum.

Pharmacognostic studies have revealed that some differences (Table 4.3). Physico -chemical study of the powder drugs of both species have shown difference in colour in presence of visible and ultraviolet light. Such findings have been found to be quite helpful for identifying two species and their ready recognition. However, microscopic analyses for both species have shown same type of raphaids, stone cells, xylem fiber, parenchymatous tissue, tracheides and trachea.

Chromosomal studies have shown outstanding uniformity in somatic diploid chromosome number as, 22. Constancy in chromosome number in two species points to their evolutionary relatedness. However, finer characters concerned with the range of chromosome lengths, length of largest and smallest chromosomes, forms of chromosomes in respect of centromeric position and the symmetry of karyotype, diversity is apparent, to some extent, amongst the provenances of same species and quite prominently between two species. Morphologically, according to

[^1]centromeric position of each chromosome has shown different nature. On the basis of centromere position both of the species has shown four types of chromosome like Median, nearly median, sub-median and sub-telocentric. Lycorine, an indolizidine alkaloid, has been chosen for examining its presence in Crinum L. and its quantity in two species and the provenances of each of them. As reported earlier (Ghosal et al. 1983, 1989, Endo et al. 2019), too, the present work confirmed the presence of this bioactive molecule in both of the studied species of Crinum, however with a notable difference in their amount of presence. Variation in the amount of lycorine has also been noted to differ among different provenances of two species, a feature that has been proved to be promising for selection to be practiced for establishing the best producer provenances and other following ones in sequence. In this regard within the species C. asiaticum the provenance Nadia has shown highest amount followed by Paschim Medinipur provenance Purba Medinipur provenance Shillong provenance. Likes wise, in the species C. latifolium the provenance Paschim Medinipur showed best result followed by Assam, Odisha, Nadia, Kolkata and Kashmir provenances. The amount of lycorine has been found greatest ($1.247 \mathrm{~g} / 100 \mathrm{~g}$) bulb in Nadia provenance of C. asiaticum. In the decreasing order of occurrence the provenances are Paschim Medinipur, Purba Medinipur, Shilong, North 24 Paraganas, Kolkata, Mangpoo and the least amount is Sundarban (0.023g). Presence of Lycorine has been noted to be associated with the micro and macro morphological data. Nadia provenance has the medium sized plant with ovate shaped bulb, large round neck and large diameter and leaves with longer length and widest width. Its scape is also longer than others. Anatomically the transverse section of the leaf has shown ovoid. Vascular bundle with eighteen strands of xylem or phloem in leaf and
transverse section of root has shown highest diameter of stele amongst eight provenances and second greatest number of xylem strand (16) and highest amount of biomass than others. The characteristic chromosomal features of this provenance have been found as length of the chromosome is $10.4 \mu \mathrm{~m}$ and $8 \mathrm{~m}+6 \mathrm{sm}+8 \mathrm{st}$ chromosome type. Among the eight provenances Crinum asiaticum L. of Sundarban have contain lowest amount of lycorine $(0.023 \mathrm{~g})$ and it is also shown variation morpho-anatomical parameter. The gross morphological appearance of these plant looks like a small herbs than others. It is so short than the Nadia. Though it has short height but the plant growth diameter shows bushy in nature. The bulb has ovate shaped but the neck is very narrow and the growth rate of the bulb is very slow as a result the diameter shown the lowest (2.50 cm) in nature than the others, leaf length is medium and width of the leaf is narrow. It has only two bracteoles and 8.72 cm length of tepal is present. These charters are helps to identify the plant in necked eye. In micro morphological study of the collected plant have shown ovoid shaped vascular bundle near about $18-19$ in a leaf and plant shown uneven shape of upper epidermal layer in leaf whether root contain eight number of xylem strand and medium cortex region and diameter of the stele also. Biomass of the plant is 0.78 g . The given data prove that the size of the bulb of Sundarban plant not a big size like others. Whether chromosome study has revealed that the chromosome length of this location is longer than the Nadia and it is shown $8 \mathrm{~m}+12 \mathrm{sm}+2$ st types of chromosome present in the somatic cell. In this way we can correlate all the parameter with the productivity of the plants (Table no 7.1 and 7.2).

In case of Crinum latifolium L. here ten different provenances have been scrutinized. Among them plants of Paschim Medinipur has contain highest amount
of lycorine (1.205g). Morphologically we can demark the plants from others with the help of flower colour which is red in colour but the tepals are shown white tint on the red. Beside of these the bulb morphology also helps to separate the plant to each other's with spherical shaped bulb without neck or collar and have long length leaf with narrow width and the plant has 4-5 number of flower present per scape and shape of the perianth is differ from others (Table No 3.9). The dorsifixed and attachment is middle of the anther just 50% with the filament. In micro morphological study has depicted that elliptical vascular bundle with 35-36 vascular bundle present in the leaf and it has only 8 xylem strand. On the chromosomal study it is noted that average length of the chromosome is $15.39 \mu \mathrm{~m}$ which is far differ from Crinum asiaticum L. and chromosome type is $10 \mathrm{~m}+6 \mathrm{sm}$ +6 st. The Crinum latifolium L. of Kashmir have contain lowest amount of lycorine $(0.014 \mathrm{~g})$ in the present study and the plant can identified with the help of morphological study, the presence of spherical bulb with highly elongated round neck and long leaf with narrow width. Interestingly the plant of Kashmir have highest number of flower in per scape which is differ from other rest nine provenance and colour of the flower is also a demarcating whole flower is white in colour with pink stripe. Flowering time also showing variation it is bloom in the month of September- October, whether other provenance are bloomed in nearly March to April. In the micromorphology leaf has elliptical vascular bundle nearly 37 numbers and root contains only 6 xylem strand. Chromosome morphology has shown variation related to somatic chromosome. Average chromosome length is $06.61 \mu \mathrm{~m}$ which is the shortest length among total studied species. It is also shown 3 types of chromosome like $12 m+6 s m+4 s t$ so the present study can indicate the
interpretation in relation to highest productivity with macro and micro morphological variation.

Present study has been revealed that both the species having different concentration of same active component. The active component lycorine is differentiate all the studied provenances among them the provenance of Nadia for the species Crinum asiaticum L . is contain highest amount of lycorine on the other hand, provenance of Paschim Medinipur of Crinum latifolium L. is showing the highest amount of lycorine. The better productive plant among different provenance of Crinum asiaticum L. can identified through higher plant height, leaf size, scape height than normal plants and the large rounded neck of bulb can separate the provenance from others.

The better productive plant from C. latifolium L . is related to the higher plant height with large leaf size and underground spherical neckless bulb with red flower with yellow tint. In micro-mophological study found that this better productive provenance has shown highest no of leaf vascular bundle.

| | poneight | pgdiameter\| ${ }^{0}$ | Ster | coincter er | leatength lea | leafwidh | | ${ }_{\text {ener }}$ | Ter | \|engthbract| | cen | ${ }_{\text {cengnole }}^{\text {ent }}$ | | ${ }_{\text {watpelo }}^{\text {e }}$ | Iengtrepal | ala | ${ }_{\text {and }}^{\text {antereneng }}$ n | annueralac ment | styleengh | ovarylength | ovarywidth | Wbshape | vono | ${ }_{\text {coereg }}^{\text {n }}$ | noxylem | diastele | | comass | cent | ${ }_{\text {a }}^{\substack{\text { amountyc } \\ \text { rine }}}$ |
| :---: |
| poreightPearson
 Corelation | | ${ }^{848}$ | ${ }_{8} 96$ | ${ }^{822}$ | ${ }^{847}$ | ${ }^{947}$ | . 916 | 775 | ${ }^{.736}$ | ${ }^{787}$ | . 471 | . 578 | . 074 | ${ }^{-466}$ | . 645 | . 404 | . 103 | .337 | . 396 | . 607 | . 535 | . 467 | . 166 | . 93 | 693 | 358 | 371 | 269 | 266 | . 240 |
| | | . 008 | . 008 | . 012 | 008 | 8.000 | . 001 | . 030 | . 038 | . 020 | . 239 | . 134 | .861 | . 245 | . 084 | .321 | . 88 | . 414 | . 32 | . 110 | . 172 | . 243 | . 695 | . 648 | . 057 | . 384 | . 365 | . 520 | .524 | ${ }^{567}$ |
| | | | .957 | . 468 | 999 | . 945 | .922 | .827 | .824 | .863 | . 651 | .461 | - 314 | 507 | . 358 | . 563 | .021 | . 096 | . 612 | 381 | -351 | . 643 | 218 | . 373 | 769 | 539 | 294 | . 228 | 268 | . 311 |
| | | | . 000 | 242 | 000 | . 000 | 001 | 011 | . 012 | 006 | . 080 | . 251 | . 488 | 199 | . 384 | . 146 | .961 | .821 | . 107 | .351 | . 394 | . 085 | . 63 | . 363 | . 026 | . 168 | 480 | .587 | .520 | . 453 |
| | | | | .633 | 961 | . 933 | 954. | 899 | 929 | 934. | . 601 | . 580 | -264 | -.548 | . 373 | .447 | - 188 | 018 | -. 569 | . 342 | -.399 | . 590 | 320 | 274 | 809 | . 487 | 246 | . 159 | . 170 | 211 |
| Sigig (2- | | | | . 092 | 000 | 0 | . 000 | . 02 | . 001 | . 001 | . 115 | . 132 | .527 | . 159 | . 363 | . 266 | . 655 | 996 | . 141 | . 407 | 396 | 6.124 | 439 | .511 | . 015 | 221 | 558 | . 706 | . 687 | ${ }_{6} 6$ |
| ${ }_{\text {er }}^{\substack{\text { pubbiamet Pearson } \\ \text { Coreataion }}}$ | | | | | . 475 | 5 | . 676 | . 590 | .550 | . 505 | . 198 | 478 | . 196 | -.304 | . 650 | . 033 | -. 049 | . 408 | - 135 | . 362 | . 500 | . 173 | . 370 | -. 115 | .621 | . 006 | . 292 | . 159 | . 024 | 002 |
| | | | | | .234 | 4.070 | 065 | . 124 | . 158 | 201 | . 638 | .231 | . 641 | . 464 | . 081 | .995 | . 908 | . 316 | . 750 | . 378 | 207 | . 683 | . 367 | . 786 | . 100 | .988 | 482 | . 77 | .954 | . 996 |
| ${ }_{\text {eatengh Pearsonn }}^{\substack{\text { Coreation }}}$ | | | | | | .996 | 919 | .831 | .832 | .859 | . 663 | . 488 | -310 | . 503 | . 374 | . 563 | . 006 | . 076 | -.636 | . 358 | -.375 | 5 . 654 | . 242 | . 374 | .789 | . 532 | 289 | . 226 | 256 | . 306 |
| Sict.e. | | | | | | .000 | 001 | 011 | . 010 | . 006 | . 073 | 242 | . 456 | . 204 | . 362 | . 146 | . 989 | . 858 | . 090 | . 383 | .361 | . 078 | .564 | .361 | . 020 | . 175 | 487 | . 591 | .540 | . 461 |
| | | | | | | | .952- | .816 | . 754 | . 804 | . 509 | . 486 | - 107 | -404 | . 600 | .427 | 141 | .261 | . 486 | 449 | 546 | . 501 | . 168 | ${ }^{371}$ | 807 | . 497 | 465 | . 376 | ${ }^{346}$ | . 390 |
| Sigi, (2- | | | | | | | 000 | . 013 | 31 | 016 | . 198 | 222 | . 80 | .321 | . 116 | . 222 | . 740 | .533 | . 222 | . 265 | . 162 | . 206 | . 691 | . 366 | . 015 | 210 | 245 | . 358 | 401 | ${ }^{339}$ |
| ${ }^{\text {cosaeneigh Peasson }}$ Coreation | | | | | | | | .858 | .820 | .903 | . 377 | . 583 | -219 | -.538 | . 405 | 255 | -. 076 | . 192 | -.356 | . 373 | -.330 | . 361 | .227 | . 242 | .777 | . 468 | . 489 | . 390 | . 382 | ${ }^{413}$ |
| Steren | | | | | | | | . 006 | . 013 | . 022 | . 358 | . 129 | . 603 | . 169 | . 319 | . 543 | . 888 | . 649 | . 386 | . 363 | . 425 | ${ }^{3} 80$ | .589 | . 564 | . 023 | . 242 | 218 | . 340 | .351 | ${ }_{310}$ |
| | | | | | | | | | .927 | ${ }^{877}$ | .443 | 285 | . 070 | -218 | . 264 | ${ }^{254}$ | -.272 | -099 | - 356 | . 139 | -237 | . 431 | . 230 | .468 | . 796 | . 688 | . 162 | . 027 | -.057 | . 077 |
| $)^{\text {sig. (2- }}$ (aied) | | | | | | | | | .001 | . 005 | .271 | . 494 | .870 | . 64 | .527 | 544 | .515 | .908 | . 387 | .743 | .571 | 286 | .584 | 243 | . 018 | . 070 | . 702 | .949 | . 89 | 855 |
|) ${ }_{\text {dembertiow Pearson }}^{\text {Corelation }}$ | | | | | | | | | | 932- | . 585 | . 512 | - 197 | - 452 | . 176 | . 389 | -476 | -251 | .537 | . 176 | -. 187 | . 581 | . 349 | ${ }^{287}$ | 729 | .530 | . 018 | - 109 | - 105 | -. 029 |
| | | | | | | | | | | . 001 | . 128 | . 194 | . 641 | .261 | . 677 | . 341 | .233 | .548 | . 170 | .678 | . 657 | . 131 | . 397 | .491 | . 040 | . 177 | . 966 | . 798 | . 805 | .945 |
| ${ }_{\text {engthract Peasson }}^{\substack{\text { Coreation }}}$ | | | | | | | | | | | . 423 | 30 | -317 | - 562 | . 155 | .337 | -.372 | -157 | -.383 | .351 | -123 | . 429 | . 142 | 282 | .611 | .583 | . 202 | . 123 | 203 | 230 |
| | | | | | | | | | | | . 297 | . 094 | . 445 | . 148 | .713 | . 415 | . 364 | .711 | 349 | 394 | .771 | 289 | . 737 | . 48 | . 108 | . 129 | . 632 | . 772 | . 630 | . 584 |
| | | | | | | | | | | | | . 174 | -318 | -.358 | . 219 | . 891 | . 016 | -.076 | .899 | 275 | -.304 | . 995 | . 403 | . 157 | . 490 | . 168 | . 409 | . 412 | -.33 | ${ }^{342}$ |
| | | | | | | | | | | | | . 680 | . 422 | . 384 | . 602 | . 033 | .971 | . 857 | . 022 | . 510 | .464 | . 000 | . 323 | . 711 | 217 | . 691 | . 314 | . 311 | . 420 | ${ }_{407}$ |
| | | | | | | | | | | | | | . 570 | -771 | . 294 | . 122 | -.397 | -. 199 | -.364 | . 316 | -288 | 8.185 | . 263 | -260 | .333 | -. 058 | . 326 | . 359 | . 477 | . 373 |
| | | | | | | | | | | | | | . 140 | . 225 | . 480 | . 774 | . 330 | .637 | . 376 | . 446 | . 40 | . 661 | .528 | .534 | ${ }_{421}$ | . 891 | 430 | . 383 | 232 | ${ }^{363}$ |
| $\begin{aligned} & \text { lengthpetiol Pearson } \\ & \text { e } \quad \text { Correlation } \end{aligned}$ | | | | | | | | | | | | | | . 868 | . 372 | -291 | . 274 | . 187 | . 420 | -. 087 | -311 | -.303 | -.35 | .457 | -.020 | . 275 | . 001 | - 100 | -.358 | -206 |
| | | | | | | | | | | | | | | . 005 | . 364 | . 485 | .511 | . 657 | . 300 | .838 | .453 | 4.466 | . 388 | . 255 | .963 | . 510 | .999 | . 814 | . 38 | ${ }^{624}$ |
| $\left\|\begin{array}{l} \text { aied) } \\ \text { widthetiol Peason } \\ \mathbf{e} \\ \text { Corealation } \end{array}\right\|$ | | | | | | | | | | | | | | | . 099 | 246 | . 35 | . 049 | . 393 | :292 | -137 | -330 | . 496 | .533 | -271 | . 267 | . 126 | . 148 | ${ }^{347}$ | - 171 |
| Sig. (2- | | | | | | | | | | | | | | | . 815 | .557 | . 463 | .907 | . 35 | . 483 | . 747 | . 424 | 211 | . 174 | .516 | .523 | . 766 | . 726 | . 39 | . 685 |
| ${ }^{\text {engthepal Parson }}$ Corelation | | | | | | | | | | | | | | | | .234 | . 43 | .339 | -. 304 | . 42 | -960 | . 235 | -.030 | . 292 | . 485 | . 137 | .433 | . 395 | . 245 | 278 |
| (exiled) | | | | | | | | | | | | | | | | . 577 | . 272 | . 412 | .464 | . 323 | . 000 | . 575 | . 944 | . 484 | . 223 | . 747 | . 284 | . 332 | .558 | . 505 |
| | | | | | | | | | | | | | | | | | . 252 | -.043 | -.753 | . 549 | - 297 | - 921 | -. 025 | . 299 | . 178 | . 293 | -.388 | -358 | -. 173 | -233 |
| Sig. (2-. | | | | | | | | | | | | | | | | | .547 | .919 | .031 | . 159 | ${ }^{476}$ | . 001 | .952 | . 472 | . 674 | . 482 | . 342 | . 384 | .681 | 578 |
| $\begin{aligned} & \text { antherlengt Pearson } \\ & \mathrm{h} \\ & \hline \text { Correlation } \end{aligned}$ | | | | | | | | | | | | | | | | | | . 729 | . 100 | . 448 | -.353 | . 022 | . 414 | . 216 | - 129 | . 005 | . 303 | . 32 | 296 | . 242 |
| Sial (2. | | | | | | | | | | | | | | | | | | . 040 | . 814 | 265 | .391 | . 960 | . 308 | . 68 | .761 | . 991 | . 466 | .467 | . 476 | . 563 |
| ${ }_{\text {a }}^{\text {antineratac Peasson }}$ Conteation | | | | | | | | | | | | | | | | | | | . 285 | . 443 | - 120 | - 117 | -.004 | -.234 | .061 | -. 255 | . 368 | .278 | 229 | . 108 |
| Sig. 2 (2- | | | | | | | | | | | | | | | | | | | . 494 | .271 | .776 | . 782 | . 922 | . 577 | . 886 | . 542 | . 369 | . 506 | . 585 | . 799 |
| | -.051 | .467 | -897 | -490 | -.144 | -.581 | -. 092 | 208 | . 157 | . 123 | ${ }^{.087}$ |
| | . 904 | 243 | . 003 | 217 | . 73 | .131 | . 829 | . 621 | . 710 | . 772 | ${ }^{83}$ |
| ${ }^{\text {ovaryenght Pearson }}$ Corolation | -237 | . 316 | -421 | . 072 | -120 | 201 | . 055 | . 022 | 240 | . 045 |
| | . 572 | . 2.446 | . 299 | .865 | . 777 | . 633 | . 897 | .959 | .566 | . 916 |
| ovarwwidth PearsonCorelation | -.325 | . 025 | - 370 | . 523 | - 163 | -.362 | . 361 | -202 | 80 |

Table no 7.2: Correlation of different provenances of C. latifolium.

[^0]: Investigation on the diversity of two species of Crinum L. with reference to their 132
 morphology, anatomy, cytology and active principle

[^1]: Investigation on the diversity of two species of Crinuml. with reference to their
 133

