Chapter 7

Dombi m-polar fuzzy graphs

7.1 Introduction

The t-operators and max \& min operators uplifted the fuzzy graph $[17,86,134]$ and little effort has been made to use new operators. Triangular co-norms (t-co-norms) and triangular norms (t-norms) were presented by Menger [35]. Alsine et al. [36] have demonstrated that t-conorms and t-norms are models for unification and intersection of fuzzy sets(FSs). Since that time, for the same effect, lots of other researchers have introduced different types of t-operators [37]. Zadeh's conventional T-operators were especially used in FG theory and decision making processes. This chapter defines join and union, composition, cartesian product of two Dombi mPFGs. Some characteristics of isomorphism are discussed as well as self complementary Dombi mPFG.

7.2 Some preliminaries

Definition 7.2.1. [145] A triangular norm (t-norm) is a binary operation T : $[0,1]^{2} \rightarrow[0,1]$ if it fulfills the following $\forall q, r$ and $u \in[0,1]$:

1) $T(1, q)=q$. (boundary condition)
2) $T(q, r)=T(r, q)$ (commutativity)
3) $T(q, T(r, s))=T(T(q, r), s)$ (associativity)
4) $T(q, r) \leq T(q, s)$ if $r \leq s$. (monotonicity)

Definition 7.2.2. [145] A triangular conorm (t-conorm) is a binary operation S : $[0,1]^{2} \rightarrow[0,1]$ if there exists a t-norm T s.t. $\forall(s, t) \in[0,1]^{2}$
$S(s, t)=1-T(1-s, 1-t)$.
Popular choices for t-norms are:

- The minimum operator M : $M(s, t)=\min (s, t)$.
- The product operator $P: P(s, t)=s t$.
- The Lukasiewiczs t-norm W : $W(s, t)=\max (s+t-1,0)$.

Popular choices for corresponding dual t-conorms are:

- The maximum operator $M^{*}: M^{*}(s, t)=\max (s, t)$.
- The probabilistic sum $P^{*}: P^{*}(s, t)=s+t-s t$.
- The bounded sum $W^{*}: W^{*}(s, t)=\min (s+t, 1)$.

The Dombi family

$$
\begin{aligned}
& t-\text { norm } \frac{1}{1+\left[\left(\frac{1-s}{s}\right)^{\mu}+\left(\frac{1-t}{t}\right)^{\mu}\right]^{\frac{1}{\mu}}}: \mu>0 \\
& t-\text { conorm } \frac{1}{1+\left[\left(\frac{1-s}{s}\right)^{-\mu}+\left(\frac{1-t}{t}\right)^{-\mu}\right]^{\frac{1}{-\mu}}}: \mu>0 \\
& \text { negation } 1-s .
\end{aligned}
$$

The Hamacher family

$$
\begin{aligned}
& t-\operatorname{norm} \frac{s t}{(1-\mu)(s+t-s t)}: \mu>0 \\
& t-\text { conorm } \frac{s+t+(\mu-2) s t}{1+(\mu-1) s t}: \mu>0 \\
& \quad \text { negation } 1-s
\end{aligned}
$$

Another set of T-operators is

$$
\begin{aligned}
& T(s, t)=\frac{s t}{s+t-s t} \\
& S(s, t)=\frac{s+t-2 s t}{1-s t}
\end{aligned}
$$

which is obtained by taking $\mu=0$, in the Hamacher family and $\mu=1$ in the Dombi family of t-norms and t-conorms. Also $P(s, t) \leq \frac{s t}{s+t-s t} \leq M(s, t)$ and $M^{*}(s, t) \leq$ $\frac{(s+t-2 s t)}{(1-s t)} \leq P^{*}(s, t)$.

7.3 Dombi m-polar fuzzy graph

In this section, we defined Dombi m-polar fuzzy graph (Dombi $m P F G$) and different types of product on Dombi m PFG.

Figure 7.1: Dombi 3PFG G.

Definition 7.3.1. An ordered pair $G=(C, D)$ is a Dombi mPFG on underlying set V where $C: V \rightarrow[0,1]$ ia a mPFSS in V and $D: V \times V: \rightarrow[0,1]$ is a symmetric $m P F$ relation on A s.t., $p_{i} \circ D(g, h) \leq \frac{\left(p_{i} \circ C(g)\right)\left(p_{i} \circ C(h)\right)}{\left(p_{i} \circ C(g)\right)+\left(p_{i} \circ C(h)\right)-\left(p_{i} \circ C(g)\right)\left(p_{i} \circ C(h)\right)}, \forall i=1,2, \ldots, m$.

We call D the Dombi mPFES and C the Dombi mPFVS of G.
Example 7.3.1. In figure 7.1, we consider Dombi mPFG over $V=\{q, r, s, t, u\}$ where $A=\left\{\frac{q}{(0.3,0.4,0.7)}, \frac{r}{(0.5,0.6,0.4)}, \frac{s}{(0.6,0.5,0.8)}, \frac{t}{(0.1,0.5,0.3)}, \frac{u}{(0.7,0.9,0.8)}\right\}$ and $B=\left\{\frac{q r}{(0.2,0.3,0.3)}, \frac{r s}{(0.3,0.3,0.2)}, \frac{r t}{(0,0.3,0.2)}, \frac{q u}{(0.2,0.3,0.5)}, \frac{u t}{(0,0.4,0.2)}\right\}$.

7.4 Products on Dombi m-polar fuzzy graphs

In this section, we defined different types of products on Dombi m PFGs G_{1} and G_{2}. These operations are Cartesian product, composition, direct product, semi-strong product and strong product.

7.4.1 Direct product on Dombi m-polar fuzzy graphs

Definition 7.4.1. Let $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ be two DombimPFGs. The direct product $G_{1} \times G_{2}=\left(C_{1} \times C_{2}, D_{1} \times D_{2}\right)$ of two Dombi mPFGs G_{2} and G_{1}, as it follows $\forall i=1,2, \ldots, m$,

Figure 7.2: Direct product of two Dombi 3PFG G_{1} and G_{2}.

Example 7.4.1. Consider two Dombi mPFGs $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}\right.$, $\left.D_{2}\right)$ where, $C_{1}=\left\{\frac{q}{(0.8,0.9,0.9)}, \frac{r}{(0.4,0.3,0.5)}\right\}, D_{1}=\left\{\frac{q r}{(0.3,0.2,0.4)}\right\}$ and $C_{2}=\left\{\frac{s}{(0.3,0.2,0.5)}\right.$, $\left.\frac{t}{(0.8,0.7,0.9)}\right\}, \quad D_{2}=\left\{\frac{s t}{(0.2,0.1,0.3)}\right\}$. Then we have $\left(C_{1} \times C_{2}\right)(q, s)=(0.28,0.20,0.47)$, $\left(C_{1} \times C_{2}\right)(r, t)=(0.36,0.27,0.47),\left(C_{1} \times C_{2}\right)(q, t)=(0.67,0.65,0.82),\left(C_{1} \times C_{2}\right)(r, s)=$ $(0.21,0.14,0.33),\left(D_{1} \times D_{2}\right)((q, s)(r, t))=(0.14,0.07,0.20)$ and $\left(D_{1} \times D_{2}\right)((q, t)(r, s))=$ (0.14, 0.07, 0.20).

Proposition 7.4.1. Let G_{1} and G_{2} be the Dombi mPFGs of the graphs G_{1}^{*} and G_{2}^{*} respectively. Then $G_{1} \times G_{2}$ is the Dombi mPFG of $G_{1}^{*} \times G_{2}^{*}$ where $G_{1} \times G_{2}$ is the direct product of G_{1} and G_{2}.

Proof. Consider $s_{1} t_{1} \in E_{1}$ and $s_{2} t_{2} \in E_{2}$. Then $\forall i$,

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \times D_{2}\right)\left(\left(s_{1}, s_{2}\right)\left(t_{1}, t_{2}\right)\right) \\
& =\frac{\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}{\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)+\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)-\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)} \\
& =T\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right), p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right) \\
& \leq T\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right), \frac{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right.}{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(t_{2}\right)-\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right.\right.}\right) \\
& \leq T\left(\frac{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{1}\left(t_{1}\right)\right)}{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{1}\left(t_{1}\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{1}\left(t_{1}\right)\right.\right.},\right. \\
& \left.\left.\frac{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right.}{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(t_{2}\right)-\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right.\right.}\right)\right) \\
& \text { (let, } \left.p_{i} \circ C_{1}\left(s_{1}\right)=x_{1}, p_{i} \circ C_{1}\left(t_{1}\right)=x_{2}, p_{i} \circ C_{1}\left(s_{2}\right)=y_{1}, p_{i} \circ C_{1}\left(t_{2}\right)=y_{2}\right) \\
& =\frac{\frac{\left(x_{1}\right)\left(x_{2}\right)\left(y_{1}\right)\left(y_{2}\right)}{\frac{\left.\left(\left(x_{1}\right)+\left(x_{2}\right)-\left(x_{1}\right)\left(x_{2}\right)\right)\left(y_{1}\right)+\left(y_{2}\right)-\left(y_{1}\right)\left(y_{2}\right)\right)}{\left(x_{1}\right)}}}{\frac{\left(y_{1}\right)\left(x_{2}\right)}{\left.x_{1}\right)+\left(x_{2}\right)-\left(x_{1}\right)\left(x_{2}\right)}+\frac{\left(y_{1}\right)}{\left(y_{1}\right)+\left(y_{2}\right)-\left(y_{1}\right)\left(y_{2}\right)}} \\
& -\frac{\left(x_{1}\right)\left(x_{2}\right)\left(y_{1}\right)\left(y_{2}\right)}{-\frac{x_{1}}{\left.\left(x_{1}\right)+\left(x_{2}\right)-\left(x_{1}\right)\left(x_{2}\right)\right)\left(\left(y_{1}\right)+\left(y_{2}\right)-\left(y_{1}\right)\left(y_{2}\right)\right)}} \\
& =\frac{\frac{\left(x_{1}\right)\left(y_{1}\right)\left(x_{2}\right)\left(y_{2}\right)}{\left.\left(x_{1}\right)+\left(y_{1}\right)-\left(x_{1}\right)\left(y_{1}\right)\right)\left(\left(x_{2}\right)+\left(y_{2}\right)-\left(x_{2}\right)\left(y_{2}\right)\right)}}{\frac{\left(x_{1}\right)\left(y_{1}\right)}{\left(x_{1}\right)+\left(y_{1}\right)-\left(x_{1}\right)\left(y_{1}\right)}+\frac{\left(x_{2}\right)\left(y_{2}\right)}{\left(x_{2}\right)+\left(y_{2}\right)-\left(x_{2}\right)\left(y_{2}\right)}} \\
& -\frac{\left(x_{1}\right)\left(y_{1}\right)\left(x_{2}\right)\left(y_{2}\right)}{\left.-\frac{\left.\left.\left.x_{1}\right)+\left(y_{1}\right)-\left(x_{1}\right)\left(y_{1}\right)\right)\left(x_{2}\right)+\left(y_{2}\right)-\left(x_{2}\right)\left(y_{2}\right)\right)}{\left(p_{1}\right.}\right)} \\
& =\frac{\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(s_{1}, s_{2}\right)\right)\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(t_{1}, t_{2}\right)\right)}{\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(s_{1}, s_{2}\right)\right)+\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(t_{1}, t_{2}\right)\right)} \\
& \overline{-\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(s_{1}, s_{2}\right)\right)\left(p_{i} \circ\left(C_{1} \times C_{2}\right)\left(t_{1}, t_{2}\right)\right)} .
\end{aligned}
$$

7.4.2 Cartesian product of two Dombi m-polar fuzzy graph

Definition 7.4.2. Let $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ be two Dombi mPFGs. The cartesian product $G_{1} \square G_{2}=\left(C_{1} \square C_{2}, D_{1} \square D_{2}\right)$ of two Dombi mPFGs G_{2} and G_{1} of the graphs $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ and $G_{1}^{*}=\left(V_{1}, E_{1}\right)$, as it follows, for all $i=1,2, \ldots, m$
i) $p_{i} \circ\left(C_{1} \square C_{2}\right)\left(r_{1}, r_{2}\right)=\frac{\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)}{\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)+\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)}, \forall\left(r_{1}, r_{2}\right) \in V_{1} \times V_{2}$.
ii) $p_{i} \circ\left(D_{1} \square D_{2}\right)\left(\left(r, r_{2}\right)\left(r, s_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(r)\right)\left(p_{i} \circ D_{2}\left(r_{2} s_{2}\right)\right)}{\left(p_{i} \circ C_{1}(r)\right)+\left(p_{i} \circ D_{2}\left(r_{2} s_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)\left(p_{i} \circ D_{2}\left(r_{2} s_{2}\right)\right)}$ for all $r \in$ $V_{1}, \forall r_{2} s_{2} \in E_{2}$.
iii) $p_{i} \circ\left(D_{1} \square D_{2}\right)\left(\left(r_{1}, t\right)\left(s_{1}, t\right)\right)=\frac{\left(p_{i} \circ D_{1}\left(r_{1} s_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)}{\left(p_{i} \circ D_{1}\left(r_{1} s_{1}\right)+\left(p_{i} \circ C_{2}(t)\right)-\left(p_{i} \circ D_{1}\left(r_{1} s_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)\right.} \forall r_{1} s_{1} \in E_{1}$, for all $t \in V_{2}$.

Figure 7.3: Cartesian product of two Dombi 3PFG G_{1} and G_{2}.

Example 7.4.2. Consider two DombimPFGs $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ where, $C_{1}=\left\{\frac{q}{(0.3,0.5,0.9)}, \frac{r}{(0.5,0.2,0.4)}\right\}, D_{1}=\left\{\frac{q r}{(0.2,0.1,0.3)}\right\}$ and $C_{2}=\left\{\frac{s}{(0.4,0.6,0.8)}, \frac{t}{(0.3,0.4,0.7)}\right\}$, $D_{2}=\left\{\frac{s t}{(0.2,0.3,0.5)}\right\}$. Then we have
$D_{1} \square D_{2}((q, s)(r, s))=(0.15,0.09,0.27)$,
$D_{1} \square D_{2}((r, s)(r, t))=(0.23,0.15,0.34)$,
$D_{1} \square D_{2}((r, t)(q, t))=(0.13,0.08,0.26)$,
$D_{1} \square D_{2}((q, t)(q, s))=(0.13,0.23,0.47)$.
Therefore $G_{1} \square G_{2}$ is not a Dombi mPFG.

Definition 7.4.3. If mPF membership degree of each of the Dombi mPFG G is come from $[0,1]$ and every vertex in G is crisp, then G is the Dombi mPF edge graph(Dombi $m P F E G)$.

Proposition 7.4.2. The cartesian product $G_{1} \square G_{2}$ of G_{1} and G_{2} is Dombi mPFG of $G_{1}^{*} \square G_{2}^{*}$, where G_{2} and G_{1} be the Dombi mPFEGs of the graphs G_{2}^{*} and G_{1}^{*}.

Proof. Consider $r \in V_{1}, r_{2} t_{2} \in E_{2}$, then

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \square D_{2}\right)\left(\left(r, r_{2}\right)\left(r, s_{2}\right)\right) \\
= & \frac{\left(p_{i} \circ C_{1}(r)\right)\left(p_{i} \circ D_{2}\left(r_{2}, s_{2}\right)\right)}{\left(p_{i} \circ C_{1}(r)\right)+\left(p_{i} \circ D_{2}\left(r_{2}, s_{2}\right)\right)-\left(p_{i} \circ C_{1}(r)\right)\left(p_{i} \circ D_{2}\left(r_{2}, s_{2}\right)\right)} \\
= & T\left(p_{i} \circ C_{1}(r), p_{i} \circ D_{2}\left(r_{2}, s_{2}\right)\right) \\
= & T\left(1, p_{i} \circ D_{2}\left(r_{2}, s_{2}\right)\right) \\
= & p_{i} \circ D_{2}\left(r_{2}, s_{2}\right) \\
\leq & \frac{\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)-\left(p_{i} \circ C_{2}\left(r_{2}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)} \\
= & \frac{\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(R)\right)\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(S)\right)}{\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(R)\right)+\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(S)\right)-\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(R)\right)\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(S)\right)} \\
& \text { where, R=(r,r2),S=(r,s2).}
\end{aligned}
$$

Consider $t \in V_{2}, r_{1} s_{1} \in E_{1}$. Then

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \square D_{2}\right)\left(\left(r_{1}, t\right)\left(s_{1}, t\right)\right) \\
= & \frac{\left(p_{i} \circ D_{1}\left(r_{1}, s_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)}{\left(p_{i} \circ D_{1}\left(r_{1}, s_{1}\right)\right)+\left(p_{i} \circ C_{2}(t)\right)-\left(p_{i} \circ D_{1}\left(r_{1}, s_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)} \\
= & T\left(\left(p_{i} \circ D_{1}\left(r_{1}, s_{1}\right), p_{i} \circ C_{2}(t)\right)\right. \\
= & T\left(p_{i} \circ D_{1}\left(r_{1}, s_{1}\right), 1\right) \\
= & p_{i} \circ D_{1}\left(r_{1}, s_{1}\right) \\
\leq & \frac{\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)\left(p_{i} \circ C_{1}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)+\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)-\left(p_{i} \circ C_{1}\left(r_{1}\right)\right)\left(p_{i} \circ C_{1}\left(s_{1}\right)\right.} \\
= & \frac{\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(U)\right)\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(V)\right)}{\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(U)\right)+\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(V)\right)-\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(U)\right)\left(p_{i} \circ\left(C_{1} \square C_{2}\right)(V)\right)} \\
& w h e r e, U=\left(r_{1}, t\right), V=\left(s_{1}, t\right) .
\end{aligned}
$$

Hence proved.

Example 7.4.3. Taking two Dombi mPFG $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$, where $C_{1}(x)=(1,1,1) \forall x \in V_{1}$ and $D_{1}=\left\{\frac{q r}{(0.6,0.7,0.9)}\right\}, C_{2}(y)=(1,1,1) \forall y \in V_{2}$ and $D_{2}=\left\{\frac{s t}{(0.5,0.4,0.6)}, \frac{t u}{(0.3,0.5,0.7)}\right\}$. Then we have,
$D_{1} \square D_{2}((q, s)(q, t))=(0.5,0.4,0.6)$,
$D_{1} \square D_{2}((q, t)(q, u))=(0.3,0.5,0.7)$,
$D_{1} \square D_{2}((r, s)(r, t))=(0.5,0.4,0.6)$,
$D_{1} \square D_{2}((r, t)(r, u))=(0.3,0.5,0.7)$,
$D_{1} \square D_{2}((q, s)(r, s))=(0.6,0.7,0.9)$,

Figure 7.4: cartesian product of two Dombi 3PFEG G_{1} and G_{2}.
$D_{1} \square D_{2}((q, t)(r, t))=(0.6,0.7,0.9)$,
$D_{1} \square D_{2}((q, u)(r, u))=(0.6,0.7,0.9)$.
Here we get $G_{1} \square G_{2}$ is the Dombi mPFEG of $G_{1}^{*} \square G_{2}^{*}$.

Definition 7.4.4. Let $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ be two DombimPFGs. The semi strong product $G_{1} \bullet G_{2}=\left(C_{1} \bullet C_{2}, D_{1} \bullet D_{2}\right)$ of the Dombi mPFGs G_{2} and G_{1} of $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ and $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ respectively as follows:
i) $p_{i} \circ\left(C_{1} \bullet C_{2}\right)\left(s_{1}, s_{2}\right)=\frac{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}, \forall\left(s_{1}, s_{2}\right) \in V_{1} \times V_{2}$.
ii) $p_{i} \circ\left(D_{1} \bullet D_{2}\right)\left(\left(s, s_{2}\right)\left(s, t_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)} \forall s \in V_{1}$, $\forall s_{2} t_{2} \in E_{2}$.
iii) $p_{i} \circ\left(D_{1} \bullet D_{2}\right)\left(\left(s_{1}, s_{2}\right)\left(t_{1}, t_{2}\right)\right)=\frac{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)+\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)-\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}$ $\forall s_{1} t_{1} \in E_{1}, \forall s_{2} t_{2} \in E_{2}$.

Proposition 7.4.3. Let G_{1} and G_{2} be the Dombi mPFGs of the graphs G_{1}^{*} and G_{2}^{*} respectively. The semi strong product $G_{1} \bullet G_{2}$ is the Dombi mPFEG of $G_{1}^{*} \bullet G_{2}^{*}$.

Proof. Consider $s \in V_{1}, s_{2} t_{2} \in E_{2}$. Then

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \bullet D_{2}\right)\left(\left(s, s_{2}\right)\left(s, y_{2}\right)\right) \\
= & \frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right.\right.} \\
= & T\left(p_{i} \circ C_{1}(s), p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right) \\
= & T\left(1, p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right) \\
= & p_{i} \circ D_{2}\left(s_{2}, t_{2}\right) \\
\leq & \frac{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)-\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)} \\
= & \frac{\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(S)\right)\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(T)\right)}{\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(S)\right)+\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(T)\right)-\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(S)\right)\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(T)\right)} \\
& w h e r e, S=\left(s, s_{2}\right), T=\left(s, t_{2}\right)
\end{aligned}
$$

Consider,

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \bullet D_{2}\right)\left(\left(s_{1}, t_{1}\right)\left(s_{2}, t_{2}\right)\right) \\
= & \frac{\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}{\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)+\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)-\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)} \\
= & T\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right), p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right) \\
\leq & T\left(\frac{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{1}\left(t_{1}\right)\right)}{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{1}\left(t_{1}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{1}\left(t_{1}\right)\right)},\right. \\
& \left.\frac{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)}{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)-\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)}\right)
\end{aligned}
$$

Putting $k=p_{i} \circ C_{1}\left(s_{1}\right), l=p_{i} \circ C_{1}\left(t_{1}\right), m=p_{i} \circ C_{2}\left(s_{2}\right), n=p_{i} \circ C_{2}\left(t_{2}\right)$

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \bullet D_{2}\right)\left(\left(s_{1}, t_{1}\right)\left(s_{2}, t_{2}\right)\right) \\
\leq & T\left(\frac{k l}{k+l-k l}, \frac{m n}{m+n-m n}\right) \\
= & \frac{k l}{\frac{k l}{k+l-k l}+\frac{m n}{m+n-m n}-\frac{k l n}{(k+l-k l(m+n-m n)}} \frac{k l m n}{(k+l-k l)(m+n-m n)} \\
= & \frac{k m}{\frac{k m}{k+m-k m}+\frac{l n}{l+n-l n}-\frac{l n}{(k+m-k m)(l+n-l n)}} \\
= & \frac{k l m n}{\left.\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(S)\right)+\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(S)\right)\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(T)\right)-\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)\right)(S)\right)\left(p_{i} \circ\left(C_{1} \bullet C_{2}\right)(T)\right)} \\
& \text { where }, S=\left(s_{1}, s_{2}\right), T=\left(t_{1}, t_{2}\right)
\end{aligned}
$$

Figure 7.5: Semi strong product of two Dombi 3PFEG G_{1} and G_{2}.

Example 7.4.4. Here two Dombi 3PFEGs G_{1} and G_{2} with $C_{1}=\left\{\frac{(1,1,1)}{q}, \frac{(1,1,1)}{r}\right\}$, $D_{1}=\left\{\frac{(0.7,0.8,0.9)}{q r}\right\}$ and $C_{2}=\left\{\frac{(1,1,1)}{s}, \frac{(1,1,1)}{t}\right\}, D_{2}=\left\{\frac{(0.4,0.7,0.8)}{s t}\right\}$ Then we have, $\left(D_{1} \bullet D_{2}\right)((q, s),(q, t))=(0.4,0.7,0.8)$
$\left(D_{1} \bullet D_{2}\right)((r, s),(r, t))=(0.4,0.7,0.8)$
$\left(B_{1} \bullet B_{2}\right)((q, s),(r, t))=(0.34,0.59,0.73)$
$\left(B_{1} \bullet B_{2}\right)((q, t),(r, s))=(0.34,0.59,0.73)$

Definition 7.4.5. The strong product $G_{1} \boxplus G_{2}=\left(C_{1} \boxplus C_{2}, D_{1} \boxplus D_{2}\right)$ of the Dombi $m P F G s G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ respectively, as follows $\forall i$,
i) $p_{i} \circ\left(C_{1} \boxplus C_{2}\right)\left(s_{1}, s_{2}\right)=\frac{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}, \forall\left(s_{1}, s_{2}\right) \in V_{1} \times V_{2}$.
ii) $p_{i} \circ\left(D_{1} \boxplus D_{2}\right)\left(\left(s, s_{2}\right)\left(s, t_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)} \forall s \in V_{1}$, $\forall s_{2} t_{2} \in E_{2}$.
iii) $p_{i} \circ\left(D_{1} \boxplus D_{2}\right)\left(\left(s_{1}, t\right)\left(t_{1}, t\right)\right)=\frac{\left(p_{i} \circ D_{1}\left(s_{1} 1 t_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)}{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)+\left(p_{i} \circ C_{2}(t)\right)-\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)} \forall s_{1} t_{1} \in E_{1}$ and $\forall t \in V_{2}$.
iv) $p_{i} \circ\left(D_{1} \boxplus D_{2}\right)\left(\left(s_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=\frac{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)+\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)-\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2}, t_{2}\right)\right)}$ $\forall s_{1} t_{1} \in E_{1}, \forall s_{2} t_{2} \in E_{2}$.

Proposition 7.4.4. The strong product $G_{1} \boxplus G_{2}$ of G_{2} and G_{1} is the domain mPFEG of $G_{1}^{*} \boxplus G_{2}^{*}$, where G_{2} and G_{1} be the Dombi mPFGs of the graphs G_{2}^{*} and G_{1}^{*}.

Proof. This proposition is proof from the using of proposition 3.9 and 3.12.

Example 7.4.5. Consider two Dombi mPFG $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ where $C_{1}(s)=(1,1,1) \forall s \in V_{1}$ and $D_{1}=\left\{\frac{(0.6,0.7,0.8)}{q r}\right\}, C_{2}(s)=(1,1,1) \forall s \in V_{2}$ and $D_{2}=\left\{\frac{(0.3,0.5,0.8)}{u v}\right\} \quad$ Then, $\left(D_{1} \boxplus D_{2}\right)((q, u)(q, v))=(0.3,0.5,0.8)$
$\left(D_{1} \boxplus D_{2}\right)((r, u)(r, v))=(0.3,0.5,0.8)$
$\left(D_{1} \boxplus D_{2}\right)((q, u)(r, u))=(0.6,0.7,0.8)$
$\left(D_{1} \boxplus D_{2}\right)((q, v)(r, v))=(0.6,0.7,0.8)$
$\left(D_{1} \boxplus D_{2}\right)((q, u)(r, v))=(0.42,0.41,0.67)$
$\left(D_{1} \boxplus D_{2}\right)((q, v)(r, u))=(0.42,0.41,0.67)$.

Figure 7.6: Strong product of two Dombi 3PFEG G_{1} and G_{2}.

Definition 7.4.6. The lexicographic product $G_{1}\left[G_{2}\right]=\left(C_{1} \circ C_{2}, D_{1} \circ D_{2}\right)$ of two Dombi mPFGs $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ is defined as, $\forall i$,
i) $p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(s_{1}, s_{2}\right)=\frac{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}{\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)}, \forall\left(s_{1}, s_{2}\right) \in V_{1} \times V_{2}$.
ii) $p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s, s_{2}\right)\left(s, t_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)} \forall s \in V_{1}$,

$$
\forall s_{2} t_{2} \in E_{2}
$$

iii) $p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s_{1}, t\right)\left(t_{1}, t\right)\right)=\frac{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)}{\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)+\left(p_{i} \circ C_{2}(t)\right)-\left(p_{i} \circ D_{1}\left(s_{1} t_{1}\right)\right)\left(p_{i} \circ C_{2}(t)\right)}$

$$
\forall s_{1} t_{1} \in E_{1} \text { and } \forall t \in V_{2} .
$$

iv) $p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s_{1}, t_{1}\right)\left(s_{1}, t_{2}\right)\right)$

$$
\begin{aligned}
&=\frac{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)}{\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)+\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)\left(p_{i} \circ D\left(s_{1}, t_{1}\right)\right)+\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)} \\
& \frac{}{-2\left(p_{i} \circ C_{2}\left(s_{2}\right)\right)\left(p_{i} \circ C_{2}\left(t_{2}\right)\right)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)}
\end{aligned} s_{1} t_{1} \in E_{1}, s_{2} \neq t_{2} .
$$

Proposition 7.4.5. The lexicographic product $G_{1}\left[G_{2}\right]$ of two Dombi mPFG of G_{1}^{*} and G_{2}^{*} is the Dombi mPFEG of $G_{1}^{*}\left[G_{2}^{*}\right]$.

Proof. Using the proposition 3.12, we get $\forall i$.
$p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s, s_{2}\right)\left(s, t_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)} \forall s \in V_{1}$,
$\forall s_{2} t_{2} \in E_{2}$.
And
$p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s, s_{2}\right)\left(s, t_{2}\right)\right)=\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ D_{2}\left(s_{2} t_{2}\right)\right)} \forall s \in V_{1}$,
$\forall s_{2} t_{2} \in E_{2}$.
Now for $s_{1} t_{1} \in E_{1}, s_{2} \neq t_{2}$. Then

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \circ D_{2}\right)\left(\left(s_{1}, s_{2}\right)\left(t_{1}, t_{2}\right)\right) \\
& \left(\text { let, } p_{i} \circ C_{2}\left(s_{2}\right)=S, p_{i} \circ C_{2}\left(t_{2}\right)=T\right) \\
& =\frac{(S)(T)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)}{(S)(T)+(T)\left(p_{i} \circ D\left(s_{1}, t_{1}\right)+(S)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)-2(S)(T)\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\right.} \\
& =T\left(T\left(\left(p_{i} \circ C_{1}\left(s_{1}\right)\right),\left(p_{i} \circ C_{1}\left(t_{2}\right)\right)\right),\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\right) \\
& =T\left(T(1,1),\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right)\right) \\
& =\left(p_{i} \circ D_{1}\left(s_{1}, t_{1}\right)\right) \\
& \leq \frac{\left.\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{(} t_{1}\right)\right)}{\left.\left.\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)+\left(p_{i} \circ C_{(} t_{1}\right)\right)-\left(p_{i} \circ C_{1}\left(s_{1}\right)\right)\left(p_{i} \circ C_{(} t_{1}\right)\right)} \\
& =\frac{\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(s_{1}, s_{2}\right)\right)\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(t_{1}, t_{2}\right)\right)}{\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(s_{1}, s_{2}\right)\right)+\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(t_{1}, t_{2}\right)\right)-\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(s_{1}, s_{2}\right)\right)\left(p_{i} \circ\left(C_{1} \circ C_{2}\right)\left(t_{1}, t_{2}\right)\right)}
\end{aligned}
$$

Hence proved.

Example 7.4.6. Consider two Dombi mPFG $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ where $C_{1}(x)=(1,1,1) \forall x \in V_{1}$ and $D_{1}=\left\{\frac{(0.2,0.4,0.7)}{q r}\right\}, C_{2}(x)=(1,1,1) \forall x \in V_{2}$, $D_{2}=\left\{\frac{(0.5,0.6,0.9)}{s t}, \frac{(0.3,0.5,0.7)}{t u}\right\}$. Then
$\left(D_{1} \circ D_{2}\right)((q, s)(r, s))=(0.2,0.4,0.7),\left(D_{1} \circ D_{2}\right)((a, d)(b, d))=(0.2,0.4,0.7)$,
$\left(D_{1} \circ D_{2}\right)((q, u)(r, u))=(0.2,0.4,0.7),\left(D_{1} \circ D_{2}\right)((a, c)(a, d))=(0.5,0.6,0.9)$,
$\left(D_{1} \circ D_{2}\right)((q, t)(q, u))=(0.3,0.5,0.7),\left(D_{1} \circ D_{2}\right)((b, c)(b, d))=(0.3,0.5,0.7)$,
$\left(D_{1} \circ D_{2}\right)((r, t)(r, u))=(0.3,0.5,0.7),\left(D_{1} \circ D_{2}\right)((a, c)(b, d))=(0.2,0.4,0.7)$,
$\left(D_{1} \circ D_{2}\right)((r, s)(q, t))=(0.2,0.4,0.7),\left(D_{1} \circ D_{2}\right)((a, d)(b, e))=(0.2,0.4,0.7)$,
$\left(D_{1} \circ D_{2}\right)((q, u)(r, t))=(0.2,0.4,0.7),\left(D_{1} \circ D_{2}\right)((a, c)(b, e))=(0.2,0.4,0.7)$,
$\left(D_{1} \circ D_{2}\right)((q, u)(r, s))=(0.2,0.4,0.7)$.

Definition 7.4.7. Let C_{1} be a mPF subset of V_{i} and D_{i} be a mPF subset of E_{i}, for $i=1,2$. Define the union $G_{1} \cup G_{2}=\left(C_{1} \cup C_{2}, D_{1} \cup D_{2}\right)$ of the Dombi mPFGs $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ and $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ as follows:

Figure 7.7: Lexicographic product of two Dombi 3PFEG G_{1} and G_{2}.
$p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)=\left\{\begin{array}{l}p_{i} \circ C_{1}(s), \quad \text { if } s \in V_{1} \backslash V_{2} \\ p_{i} \circ C_{2}(s), \quad \text { if } s \in V_{2} \backslash V_{1} \\ \frac{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{2}(s)\right)-2\left(p_{0} \circ C_{1}(s)\right)\left(p_{i} \circ C_{2}(s)\right)}{1-\left(p_{i} \circ C_{1}(s)\left(p_{i} \circ C_{2}(s)\right)\right.}, \quad \text { if } s \in V_{1} \cap V_{2}\end{array}\right.$
$p_{i} \circ\left(D_{1} \cup D_{2}\right)(s t)=\left\{\begin{array}{l}p_{i} \circ D_{1}(s t), \quad \text { if } s t \in E_{1} \backslash E_{2} \\ p_{i} \circ D_{2}(s t), \quad \text { if } s t \in E_{2} \backslash E_{1} \\ \frac{\left(p_{i} \circ D_{1}(s t)\right)+\left(p_{i} \circ D_{2}(s t)\right)-2\left(p_{i} \circ D_{1}(s t)\right)\left(p_{i} \circ D_{2}(s t)\right)}{1-\left(p_{i} \circ D_{1}(s t)\right)\left(p_{i} \circ D_{2}(s t)\right)}, \text { if } s t \in E_{1} \cap E_{2}\end{array}\right.$

Example 7.4.7. We consider two Dombi mPFGs G_{1} and G_{2}, where
$C_{1}=\left\{\frac{(0.5,0.6,0.8)}{q}, \frac{(0.8,0.9,0.7)}{r}, \frac{(0.5,0.6,0.7)}{c}\right\}, D_{1}=\left\{\frac{(0.4,0.5,0.5)}{q r}, \frac{(0.4,0.5,0.5)}{r s}, \frac{(0.3,0.4,0.5)}{s q}\right\}$ and
$C_{2}=\left\{\frac{(0.2,0.4,0.6)}{q}, \frac{(0.7,0.8,0.9)}{r}, \frac{(0.6,0.7,0.8)}{t}\right\}, D_{2}=\left\{\frac{(0.1,0.3,0.5)}{q r}, \frac{(0.4,0.5,0.7)}{r t}, \frac{(0.1,0.3,0.5)}{q t}\right\}$
Then we have, $C_{1} \cup C_{2}=\left\{\frac{(0.5,0.6,0.7)}{s}, \frac{0.6,0.7,0.8}{t}, \frac{(0.55,0.68,0.84)}{q}, \frac{(0.86,0.092,0.92)}{r}\right\}$
$D_{1} \cup D_{2}=\left\{\frac{(0.43,0.58,0.75)}{q r}, \frac{0.4,0.5,0.5}{r s}, \frac{(0.4,0.5,0.7)}{r t}, \frac{(0.1,0.3,0.5)}{q t}, \frac{(0.3,0.4,0.5)}{s q}\right\}$.

Figure 7.8: Union of two Dombi 3PFG G_{1} and G_{2}.

Theorem 7.4.1. Let $G_{2}=\left(V_{2}, C_{2}, D_{2}\right)$ and $G_{1}=\left(V_{1}, C_{1}, D_{1}\right)$ be two Dombi mPFG of the graphs $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ and $G_{1}^{*}=\left(V_{1}, E_{1}\right)$, where $V_{1} \cap V_{2}=\phi$. Then the union $G_{1} \cup G_{2}$ of G_{1} and G_{2} is the Dombi mPFG of $G_{1} \cup G_{2}$.

Proof. Suppose G_{2} and G_{1} are the Dombi $m \mathrm{PFG}$ of the graphs G_{2}^{*} and G_{1}^{*} respectively. Consider, st $\in E_{1} \backslash E_{2}$. Then $\forall i$,
$p_{i} \circ\left(D_{1} \cup D_{2}\right)(s t)$
$=p_{i} \circ D_{1}(s t)$
$\leq \frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}$
$=\frac{\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)\right)\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)}{\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)\right)+\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)}$ as $V_{1} \cap V_{2}=\phi$
Similarly, if st $\in E_{2} \backslash E_{1}$
Then $\forall i, p_{i} \circ\left(D_{1} \cup D_{2}\right)(s t) \leq \frac{\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)\right)\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)}{\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)+\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ\left(C_{1} \cup C_{2}\right)(t)\right)\right.}$
And as $V_{1} \cap V_{2}=\phi$ so $E_{2} \cap E_{1}=\phi$.
Hence $G_{1} \cup G_{2}$ is the Dombi m PFG of G_{1}^{*} and G_{2}^{*}.

Definition 7.4.8. The ring sum $G_{1} \oplus G_{2}=\left(C_{1} \oplus C_{2}, D_{1} \oplus D_{2}\right)$ of the Dombi mPFGs $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ is defined as for all i, $p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s)=p_{i} \circ\left(C_{1} \cup C_{2}\right)(s)$ if $s \in V_{1} \cup V_{2}$
$p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t)=\left\{\begin{array}{l}p_{i} \circ D_{1}(s t), \quad \text { if } s t \in E_{1} \backslash E_{2} \\ p_{i} \circ D_{2}(s t), \quad \text { if } s t \in E_{2} \backslash E_{1} \\ 0, \quad \text { if st } \in E_{1} \cap E_{2}\end{array}\right.$
Theorem 7.4.2. The ring sum $G_{1} \oplus G_{2}$ of two Dombi mPFGs G_{1} and G_{2} of G_{1}^{*} and G_{2}^{*} is the Dombi mPFG of $G_{1}^{*} \oplus G_{2}^{*}$.

Proof. At first, we consider st $\in E_{1} \backslash E_{2}$. Then there aries three possibilities i) $s, t \in V_{1} \backslash V_{2}$
ii) $s \in V_{1} \backslash V_{2}, y \in V_{1} \cap V_{2}$
iii) $s, t \in V_{1} \cap V_{2}$.
i) Suppose $s, t \in V_{1} \backslash V_{2}$. Then $\forall i$,

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t) \\
& =p_{i} \circ D_{1}(s t) \\
& \leq \frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)+\left(p_{i} \circ C_{1}(t)\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)\right.} \\
& =T\left(p_{i} \circ C_{1}(s), p_{i} \circ C_{1}(t)\right) \\
& =T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right) \\
& =\frac{\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s)\right)\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right)}{\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s)\right)+\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right)-\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s)\right)\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right)}
\end{aligned}
$$

ii) Let $s, t \in V_{1} \backslash V_{2}, t \in V_{1} \cap V_{2}$. Then, $p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t)$

$$
\begin{align*}
& =p_{i} \circ D_{1}(s t) \\
& \leq \frac{\left(p_{i} \circ C_{1}(s)\left(p_{i} \circ C_{1}(t)\right)\right.}{\left.\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)\right)--p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)} \\
& =T\left(p_{i} \circ C_{1}(s), p_{i} \circ C_{1}(t)\right) \\
& =T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ C_{1}(t)\right) \tag{i}
\end{align*}
$$

Now we know, for all i,

$$
\begin{aligned}
& \left(p_{i} \circ C_{1}(t)-1\right)^{2} \geq 0 \\
& \text { or, }\left(p_{i} \circ C_{1}(t)\right)^{2}-2\left(p_{i} \circ C_{1}(t)\right)+1 \geq 0 \\
& \text { or, } 1-2\left(p_{i} \circ C_{1}(t)\right) \geq-\left(p_{i} \circ C_{1}(t)\right)^{2} \\
& \text { or, }\left\{1-2\left(p_{i} \circ C_{1}(t)\right\}\left(p_{i} \circ C_{2}(t)\right) \geq-\left(p_{i} \circ C_{1}(t)\right)^{2}\left(p_{i} \circ C_{2}(t)\right)\right. \\
& \text { or, }\left(p_{i} \circ C_{1}(t)\right)+\left(p_{i} \circ C_{2}(t)\right)-2\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right) \geq\left(p_{i} \circ C_{1}(t)\right)
\end{aligned}
$$

$$
\begin{align*}
& -\left(p_{i} \circ C_{1}(t)\right)^{2}\left(p_{i} \circ C_{2}(t)\right) \\
& \text { or, } \frac{\left(p_{i} \circ C_{1}(t)\right)+\left(p_{i} \circ C_{2}(t)\right)-2\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)}{1-\left(p_{i} C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)} \geq\left(p_{i} \circ C_{1}(t)\right) \tag{ii}
\end{align*}
$$

Then from (i) and (ii) we get,

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t) \\
\geq & T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ C_{1}(t)\right) \\
\leq & T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), \frac{\left(p_{i} \circ C_{1}(t)\right)+\left(p_{i} \circ C_{2}(t)\right)-2\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)}{1-\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)}\right) \\
= & T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right)
\end{aligned}
$$

iii) Suppose $s, t \in V_{1} \cap V_{2}$. Then we get,

$$
\begin{aligned}
p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t) & =p_{i} \circ D_{1}(s t) \\
& \leq T\left(p_{i} \circ C_{1}(s), p_{i} \circ C_{1}(t)\right)
\end{aligned}
$$

Similarly, as from (ii)

$$
\begin{aligned}
\left(p_{i} \circ C_{1}(s)\right) & \leq \frac{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{2}(s)\right)-2\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{2}(s)\right)}{1-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{2}(s)\right)} \\
& =p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s)
\end{aligned}
$$

$$
\begin{aligned}
\left(p_{i} \circ C_{1}(t)\right) & \leq \frac{\left(p_{i} \circ C_{1}(t)\right)+\left(p_{i} \circ C_{2}(t)\right)-2\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)}{1-\left(p_{i} \circ C_{1}(t)\right)\left(p_{i} \circ C_{2}(t)\right)} \\
& =p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)
\end{aligned}
$$

So,

$$
\begin{aligned}
p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t) & \leq T\left(p_{i} \circ C_{1}(s), p_{i} \circ C_{1}(t)\right) \\
& \leq T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right)
\end{aligned}
$$

Again by symmetry, for $s t \in E_{2} \backslash E_{1}$, in the three possible case:

$$
\begin{aligned}
& p_{i} \circ\left(D_{1} \oplus D_{2}\right)(s t) \\
\leq & T\left(p_{i} \circ C_{1}(s), p_{i} \circ C_{1}(t)\right) \\
\leq & T\left(p_{i} \circ\left(C_{1} \oplus C_{2}\right)(s), p_{i} \circ\left(C_{1} \oplus C_{2}\right)(t)\right) \\
& \quad\left(l e t,\left(C_{1} \oplus C_{2}\right)(s)=S,\left(C_{1} \oplus C_{2}\right)(t)=T\right) \\
= & \frac{\left(p_{i} \circ S\right)+\left(p_{i} \circ T\right)}{\left(p_{i} \circ S\right)+\left(p_{i} \circ T\right)-\left(p_{i} \circ S\right)\left(p_{i} \circ T\right)}
\end{aligned}
$$

Hence proved.

Definition 7.4.9. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be two Dombi mPFG. A homomorphism between G_{1} and G_{2} is a mapping $\phi: G_{1} \rightarrow G_{2}$ satisfies the condition, $\forall i$,

1) $p_{i} \circ C_{1}(s) \leq p_{i} \circ C_{2}(\phi(s)) \forall s \in V_{1}$.
2) $p_{i} \circ D_{1}(s t) \leq p_{i} \circ D_{2}(\phi(s), \phi(t)) \forall s t \in V_{1}$

Definition 7.4.10. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be two Dombi mPFG. Then an isomorphism between G_{1} and G_{2} is a mapping $\phi: G_{1} \rightarrow G_{2}$ satisfies the condition, $\forall i$

1) $p_{i} \circ C_{1}(s)=p_{i} \circ C_{2}(\phi(s)) \forall s \in V_{1}$.
2) $p_{i} \circ D_{1}(s t)=p_{i} \circ D_{2}(\phi(s), \phi(t)) \forall s t \in E_{1}$.

Definition 7.4.11. A week isomorphism $\phi: G_{1} \rightarrow G_{2}$ is a bijective mapping between G_{1} and G_{2} which satisfies

1) $p_{i} \circ C_{1}(s)=p_{i} \circ C_{2}(\phi(s)) \forall s \in V_{1}$.

Definition 7.4.12. A co-week isomorphism $\phi: G_{1} \rightarrow G_{2}$ is a bijective mapping between G_{1} and G_{2} which satisfies,

1) $\forall i, p_{i} \circ D_{1}(s t)=p_{i} \circ D_{2}(\phi(s), \phi(t)) \forall s t \in V_{1}$.

Definition 7.4.13. A Dombi mPFG $G=(C, D)$ is called self-complementary if $G=(C, D) \cong \bar{G}=(\bar{C}, \bar{D})$.

Definition 7.4.14. Let $G=(C, D)$ be a Dombi mPFG of the graph $G^{*}=(V, E)$. Then the complement of G is a Dombi mPFG $\bar{G}=(\bar{C}, \bar{D})$ where $\bar{C}(s)=C(s) \forall s \in V$ and \bar{D} is defined as $\forall i$,

$$
p_{i} \circ \bar{D}(s, t)= \begin{cases}\frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}, & \text { if } p_{i} \circ D(s, t)=0 \\ \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}-p_{i} \circ D(s, t), & \text { if } 0 \leq p_{i} \circ D(s, t) \leq 1 .\end{cases}
$$

Example 7.4.8. Consider a Dombi mPFG $G=(C, D)$ of a graph $G^{*}=(V, E)$ where $V=\{q, r, s, t\}$ and $E=\{q r, r s, q t\}$. Then $C=\left\{\frac{(0.3,0.5,0.6)}{a}, \frac{(0.2,0.3,0.5)}{b}, \frac{(0.6,0.7,0.9)}{c}\right.$, $\left.\frac{(0.2,0.4,0.6)}{d}\right\}$ and $D=\left\{\frac{(0.14,0.23,0.38)}{q r}, \frac{(0.17,0.26,0.47)}{r s}, \frac{(0.14,0.28,0.42)}{q t}\right\}$. Now the complement Dombi mPFG is $\bar{G}=(\bar{C}, \bar{D})$ where $\bar{C}(s)=C(s) \forall s \in V$ and $\bar{D}=\left\{\frac{(0.17,0.34,0.56)}{s t}\right.$, $\left.\frac{(0.25,0.41,0.56)}{q s}, \frac{(0.11,0.2,0.37)}{r t}\right\}$.

Proposition 7.4.6. Let $G=(C, D)$ be a self complementary Dombi mPFG, then $\sum_{s \neq t} p_{i} \circ D(s, t)=\frac{1}{2} \sum_{s \neq t} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} O C(s)\right)\left(p_{i} \circ C(t)\right)}$.

Proof. Let G be a self-complementary Dombi m PFG. So there is an bijective mapping $\phi: V \rightarrow V$ s.t. $\forall i$

1) $p_{i} \circ C(s)=p_{i} \circ \bar{C}(\phi(s)) \forall s \in V_{1}$.
2) $p_{i} \circ D(s t)=p_{i} \circ \bar{D}(\phi(s), \phi(t)) \forall s t \in E_{1}$.

Let, $\left(p_{i} \circ \bar{C}(\phi(s))=S,\left(p_{i} \circ \bar{C}(\phi(t))=T\right.\right.$. Then, $\forall i$,

$$
\begin{aligned}
p_{i} \circ \bar{D}(\phi(s), \phi(t))= & \frac{S)(T)}{(S)+(T)-\left(p_{i} \circ \bar{C}(\phi(s))\right)\left(p_{i} \circ \bar{C}(\phi(t))\right)} \\
& -p_{i} \circ D(\phi(s), \phi(t))
\end{aligned}
$$

or, $\quad p_{i} \circ D(s, t)=\frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}$

$$
-p_{i} \circ D(\phi(s), \phi(t))
$$

or, $\quad \sum_{s \neq t} p_{i} \circ D(s, t)+\sum_{s \neq t} p_{i} \circ D(\phi(s), \phi(t))=$

$$
\sum_{s \neq t} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}
$$

or, $\quad 2 \sum_{s \neq t} p_{i} \circ D(s, t)=\sum_{s \neq t} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}$
or, $\quad \sum_{s \neq t} p_{i} \circ D(s, t)=\frac{1}{2} \sum_{s \neq t} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}$

Proposition 7.4.7. The complements of two isomorphic Dombi mPFGs are isomorphic and conversely.

Proof. Let G_{1} and G_{2} be two isomorphic Dombi mPFGs. So there is a bijection mapping $\phi: G_{1} \rightarrow G_{2}$ s.t. $\forall i$,

1) $p_{i} \circ C_{1}(s)=p_{i} \circ C_{2}(\phi(s)) \forall s \in V_{1}$.
2) $p_{i} \circ D_{1}(s t)=p_{i} \circ D_{2}(\phi(s), \phi(t)) \forall s t \in E_{1}$.

Now we have,

$$
\begin{aligned}
p_{i} \circ \bar{D}_{1}(s, t) & =\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)\right)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}-p_{i} \circ D_{1}(s, t) \\
& =\frac{\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ C_{2}(\phi(t))\right)}{\left.\left(p_{i} \circ C_{2}(\phi(s))\right)+\left(p_{i} \circ C_{(} \phi(t)\right)\right)-\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ C_{2}(\phi(t))\right)} \\
& =p_{i} \circ \bar{D}_{2}(\phi(s), \phi(t))
\end{aligned}
$$

Hence, $\bar{G}_{1} \cong \bar{G}_{2}$.
Similarly, we can prove the converse.

Proposition 7.4.8. Let $G=(C, D)$ be a Dombi mPFG with $\forall i$, $p_{i} \circ D(s, t)=$ $\frac{1}{2} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)} \forall s, t \in V$. Then G is self complementary.

Proof. Let $G=(C, D)$ be a Dombi m PFG with $\forall i$,
$p_{i} \circ D(s, t)=\frac{1}{2} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)} \forall s, t \in V$.
Now we consider an identity mapping $I: V \rightarrow V$ which is an isomorphism from G to \bar{G}. Clearly $\forall i$,

$$
\begin{aligned}
p_{i} \circ \bar{C}(I(s)) & =p_{i} \circ \bar{C}(s) \\
& =p_{i} \circ C(s)
\end{aligned}
$$

Again,

$$
\begin{aligned}
& p_{i} \circ \bar{D}(I(s), I(t)) \\
= & p_{i} \circ \bar{D}(s, t) \\
= & \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}-p_{i} \circ D(s, t) \\
= & \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}- \\
& \frac{1}{2} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)} \\
= & \frac{1}{2} \frac{\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)}{\left(p_{i} \circ C(s)\right)+\left(p_{i} \circ C(t)\right)-\left(p_{i} \circ C(s)\right)\left(p_{i} \circ C(t)\right)} \\
= & p_{i} \circ D(s, t)
\end{aligned}
$$

So, G is self-complementary.
Proposition 7.4.9. Let G_{1} and G_{2} be two weak isomorphic Dombi mPFGs. Then the complements of G_{1} and G_{2} are weak isomorphic.

Proof. Let G_{1} and G_{2} be two weak isomorphic Dombi m PFGs. So there is a bijective mapping $\phi: V_{1} \rightarrow V_{2}$ satisfying for all i,

1) $p_{i} \circ C_{1}(s)=p_{i} \circ C_{2}(\phi(s))$ for all $s \in V_{1}$.
2) $p_{i} \circ D_{1}(s, t)=p_{i} \circ D_{2}(\phi(s), \phi(t))$ for all $(s, t) \in E_{1}$

Now, $p_{i} \circ D_{1}(s, t) \leq p_{i} \circ D_{2}(\phi(s), \phi(t))$
$o r, p_{i} \circ D_{1}(s, t)-\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)\right)}$

$$
\leq p_{i} \circ D_{2}(\phi(s), \phi(t))-\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)\right.}
$$

$o r, p_{i} \circ B_{1}(s, t)-\frac{\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)\right)}$

$$
\leq p_{i} \circ D_{2}(\phi(s), \phi(t))-\frac{\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ C_{2}(\phi(t))\right)}{\left(p_{i} \circ C_{2}(\phi(s))\right)+\left(p_{i} \circ C_{2}(\phi(t))-\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ C_{2}(\phi(t))\right)\right.}
$$

$$
\begin{aligned}
& \text { or, } \frac{\left(p_{i} C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)}{\left(p_{i} \circ C_{1}(s)\right)+\left(p_{i} \circ C_{1}(t)-\left(p_{i} \circ C_{1}(s)\right)\left(p_{i} \circ C_{1}(t)\right)\right)}-p_{i} \circ D_{1}(s, t) \\
& \quad \geq \frac{\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ O_{2}(\phi(t))\right)}{\left.\left(p_{i} \circ C_{2}(\phi(s))\right)\right)+\left(p_{i} \circ C_{2}(\phi(t))-\left(p_{i} \circ C_{2}(\phi(s))\right)\left(p_{i} \circ C_{2}(\phi(t))\right)\right.}-p_{i} \circ D_{2}(\phi(s), \phi(t))
\end{aligned}
$$

$$
o r, \quad p_{i} \circ \bar{D}_{1}(s, t) \geq p_{i} \circ \bar{D}_{2}(\phi(s), \phi(t))
$$

or, $p_{i} \circ \bar{D}_{2}(\phi(s), \phi(t)) \leq p_{i} \circ \bar{D}_{1}\left(\phi^{-1}(\phi(s)), \phi^{-1}(\phi(t))\right)$
or, $p_{i} \circ \bar{D}_{2}\left(s_{1}, t_{1}\right) \leq p_{i} \circ \overline{D_{1}}\left(\phi^{-1}\left(s_{1}\right), \phi^{-1}\left(t_{1}\right)\right)$ for all $s_{1}, t_{1} \in V_{2}$
again we know,

$$
p_{i} \circ C_{1}(s)=p_{i} \circ C_{2}(\phi(s))
$$

or, $p_{i} \circ C_{2}(\phi(s))=p_{i} \circ C_{1}\left(\phi^{-1}(\phi(s))\right)$ for all $\phi(s) \in V_{2}$
or, $p_{i} \circ C_{2}\left(t_{1}\right)=p_{i} \circ C_{1}\left(\phi^{-1}\left(t_{1}\right)\right)$ for all $t_{1} \in V_{2}$

Hence \bar{G}_{1} and \bar{G}_{2} are weak isomorphic.

7.5 Summary

The fresh Dombi mPFG idea is launched in this article. The ring sum, join and direct product of two Dombi m PFGs has been proven to be the Dombi m PFGs. In particular, however, the lexicographic product, the strong product, the semi-strong product and the Cartesian product of two Dombi m PFGs are not Dombi mPFGs. The Dombi m PFG can portray all types of networks' uncertainty well.

