
Chapter 5

Detor g-interior nodes and detor

g-boundary nodes in m-polar fuzzy

graphs

5.1 Introduction

Graph model can be used to represent electrical circuits. Minimizing the non-

overlapping circuit is the main objective in such a system. Many problems in the real

world involve multipolar information or multi-agents or multi-objects. Compared to a

fuzzy graph, mPFG gives more accurate and exact results for real problems. Here, we

present an application ofmPFG about how a person can reach his destination in a short

time using a strong path. Linda and Sunitha [75] given the concept of fuzzy detour

g-distance. The notion of g-distance in fuzzy graphs was established by Rosenfeld

and Bhutani [18]. Linda and Sunitha [76] founded the notation of g-boundary node,

g-interior node, g-eccentric node. The length of longest x − y path in a connected

fuzzy graph G is the detour distance between two nodes x and y defined in [44].

Chartrand [47] defined the main concept of the detour center of a graph. The notion

of detour number, detour set, detour nodes, detour basis in a graph were established

by Chatrand et al. [46]. Interior nodes and boundary nodes are discussed in [45]. In

this chapter, we introduced mPF detour g-distance, mPF detour g-interior node, mPF

detour g-boundary node and explained their relations. Also, some properties of these

parameters are investigated.

65



66 Chapter 5. Detor g-interior nodes in m-polar fuzzy graphs

5.2 mPF detour g distance, mPF detour g periph-

ery and mPF detour g eccentric subgraph
First we define mPF detour g distance and then mPF geodesic g distance. Then we

defined mPF detour g periphery and discussed the characterization of mPF detour g

eccentric node.

Definition 5.2.1. The length of a c−d strong mPFP P between c and d in connected

mPFG G is an mPF detour g distance if there does not exist other strong mPFP

longer than P between a and b and we denote it by mPFDg(c, d). Any c − d strong

mPFP with length mPFDg(c, d) is said to be a c− d mPF g-detour.
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Figure 5.1: Connected 3PFG G.

Example 5.2.1. Suppose G be a connected 3PFG of the graph G∗ = (V,E) where

V = {q, r, s, t, u, v} and E = {(r, t), (r, s), (q, r), (t, u), (u, v), (q, v), (s, t), (q, u)} (see

Fig. 5.1). For the 3PFG of Figure 5.1, it is seen that all arcs except (t, s), (q, r)

and (v, u) are strong 3PFE and the 3PF detour g-distance of two nodes are given

below: 3PFDg(q, r) = 3, 3PFDg(q, v) = 1, 3PFDg(q, u) = 1, 3PFDg(q, t) = 2,

3PFDg(q, s) = 4, 3PFDg(v, u) = 2, 3PFDg(t, v) = 3, 3PFDg(v, s) = 5, 3PFDg(v, r) =

4, 3PFDg(u, t) = 1, 3PFDg(u, r) = 2, 3PFDg(u, s) = 3, 3PFDg(t, r) = 1, 3PFDg(t, s) =

2 and 3PFDg(r, s) = 1.

Definition 5.2.2. The length of any smallest strong mPFP from s to t is the mPF

geodesic distance, denoted by mPFDg(s, t).
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The mPF detour g eccentricity emPFDg(y) for a node y is an mPF detour g distance

from y to a node maximum from y which implies emPFDg(y) = max(mPFDg(y, a)),

∀ a ∈ G. Suppose y be a node and each node whose mPF detour g distance is

equal to emPFDg(y) then these vertex is called an mPF detour g eccentric node.

The set of all mPF detour g eccentric vertices of x is denoted by mPFDg(x). The

mPF detour g radius of G, symbolized as radmPFDg(G) and which is defined as

min emPFDg(x), ∀ x ∈ G. If emPFDg(x) = radmPFDg(G), then the vertex x ∈ G

is said to be the mPF detour g central node of G. The mPF detour g diameter of G

is symbolized by diammPFDg(G), is defined as max emPFDg(x), ∀ x ∈ G. A node d in

a G is an mPF detour g peripheral node of G if emPFDg(d) = diammPFDg(G).

Example 5.2.2. For the connected mPFG G in Fig. 5.1, e3PFDg(s) = 5, e3PFDg(r) =

4, e3PFDg(q) = 4, e3PFDg(t) = 3, e3PFDg(u) = 3, e3PFDg(v) = 5 and rad3PFDg(G) = 3,

diam3PFDg(G) = 5.

Definition 5.2.3. An mPFG G is an mPF g-detour graph if mPFDg(s, t) = mPFDg(s, t),

∀ (s, t) ∈ E.

Definition 5.2.4. The mPF subgraph of an mPFG G is induced by the only mPF

detour g peripheral node of G, now the subgraph is called mPF detour g periphery of

G and which is symbolized by
(
PermPFDg(G)

)
.

Definition 5.2.5. If all vertex of a connected mPFG G is mPF detour g eccentric

node, then G is an mPF detour g eccentric graph. An mPF detour g eccentric subgraph

of G is an mPFSG of G, generated by the set of all mPF g-eccentric nodes of G is

called, it is symbolized as EccmPFDg(G).

Example 5.2.3. For the 3PF graph of Figure 5.2, nodes q, r, t are mPF detour g-

periphery nodes since e3PFDg(q) = 4, e3PFDg(r) = 4, e3PFDg(s) = 3, e3PFDg(t) = 4,

e3PFDg(u) = 3 and diam3PFDg(G) = 4. Here Per3PFDg(G) of mPFG shown in Figure

5.2.
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Figure 5.2: Connected 3PFG G and its Per3PFDg(G).

Example 5.2.4. From Figure 5.1, we get 3PFDg(q) = {t, r}, 3PFDg(r) = {q},

3PFDg(s) = {q, t, s}, 3PFDg(t) = {q}, 3PFDg(u) = {t, r}. Its Ecc3PFDg(G) is

shown in Figure 5.2.

Definition 5.2.6. The mPFSG of an mPFG G is caused by the only mPF detour

g central nodes is called mPF detour g centre subgraph, symbolized by CmPFDg(G).

A graph G is called mPF detour g self centered graph if all vertices of G are mPF

detour g central nodes. In every mPF detour g self centered graph, radmPFDg(G) =

diammPFDg(G).

Theorem 5.2.1. Each node of an mPFG G is an mPF detour g eccentric iff G is an

mPF detour g self centered.

Proof. Let, every vertex is an mPF detour g eccentric node in G. Here we think that
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G is not an mPF detour g self centrad graph. So radmPFDg(G) 6= diammPFDg(G) and

then ∃ a vertex l ∈ G s.t. emPFDg(l) = diammPFDg(G). Also let r ∈ mPFDg(l). Let

B be a l− r mPF detour in G. Then a vertex k on B must exist for which the vertex

k is not an mPF detour g eccentric node of B. Also, k cannot be an mPF detour g

eccentric node for the other node. Again if k is an mPF detour g eccentric node of a

node a (say), means k ∈ mPFDg(a). Then ∃ an extension of a − k mPF g−detour

up to l or up to r. But, there is a contradiction in the facts that k ∈ mPFDg(a). So

radmPFDg(G) = diammPFDg(G). Hence G is an mPF detour g self centered graph.

Conversely, let us consider G be an mPF detour g self centrad graph and x ∈ V .

Let a ∈ mPFDg(x). So this implies emPFDg(x) = mPFDg(a, x). Again we know

every vertex of G is mPF detour g central node i.e. emPFDg(y) = radmPFDg(G) ∀ y ∈

G because G is an mPF detour g self centrad graph, which means. So we have,

emPFDg(a) = emPFDg(x) = mPFDg(a, x) and which implies that x ∈ mPFDg(a).

Hence x is an mPF detour g eccentric node.

Theorem 5.2.2. If G is an mPF detour g self centrad graph with n number of nodes,

then radmPFDg(G) = diammPFDg(G) = n− 1.

Proof. Suppose G be an mPF detour g self centrad graph. If possible, let diammPFDg

(G) = l < n− 1.

Suppose B1 and B2 are two distinct mPF detour g peripheral paths. Let a ∈ B1, b ∈

B2. So a strong mPF path exists in between a and b, because of connectedness of G.

Then there exist nodes on B1 and B2, whose eccentricity > l, but which is impossible,

because diammPFDg(G) = l. Hence B1 and B2 are not distinct. Since B1 and B2

are arbitrary, then there exists a node x in G which x present in each mPF detour g

peripheral paths. So, eB.F.Dg(x) < l, which is also impossible, because G is an mPF

detour g self centrad. Hence, diammPFDg(G) = n− 1 = radmPFDg(G).

Corollary 5.2.1. Let G be a connected mPFG with the n number of nodes. Then

PermPFDg(G) = G iff the mPF detour g eccentricity of every node of G is n− 1.

Proof. Let PermPFDg(G) = G. Then emPFDg(a) = diammPFDg(G), ∀ a ∈ G. So every

node of G is an mPF detour g periphery node. Therefore, G is an mPF detour g self

centrad graph and radmPFDg(G) = diammPFDg(G) = n − 1. So, n − 1 is the mPF

detour g eccentricity of each node of G.
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Conversely, suppose the mPF detour g eccentricity of each node of G is n − 1. So

radmPFDg(G) = diammPFDg(G) = n− 1. All nodes of G are mPF detour g peripheral

nodes and hence PermPFDg(G) = G.

Corollary 5.2.2. For a connected mPFG G, EccmPFDg(G) = G iff the mPF detour

g eccentricity of every node of G is n− 1.

Proof. Suppose EccmPFDg(G) = G. So every node of G is mPF detour g eccen-

tric node. Therefore G is mPF detour g self centrad graph and redmPFDg(G) =

diammPFDg(G) = n − 1. Hence, n − 1 is the mPF detour g eccentricity of each node

of G.

Conversely, suppose the mPF detour g eccentricity of each node of G is n − 1. So

radmPFDg(G) = diammPFDg(G) = n− 1. All nodes of G are mPF detour g peripheral

nodes as well as mPF detour g eccentric node. Hence, EccmPFDg(G) = G.

Theorem 5.2.3. In a connected mPFG G, a node s is an mPF detour g peripheral

node if and only if s is an mPF detour g eccentric node.

Proof. Let us assume that t ∈ PermPFDg(G). So there exists an mPF detour g pe-

ripheral node, say t (distinct from a). Therefore, s is an mPF detour g eccentric node

of s.

Conversely, let us say that s be an mPF detour g eccentric node of G and let s ∈

mPFDg(b). Let q and r be two mPF detour g peripheral nodes, then mPFDg(q, r) =

diammPFDg(G) = k(say). Let B1 and B2 be any q − r and t − s mPF g detour in G

respectively. Then two cases will arise.

Case 1: When a is not an internal node in G i.e, there is only one node, say u which

is adjacent to a. So u ∈ B2. Since G is connected, u is connected to a node of B1, say

u′. So either u′ ∈ B2 or c′ ∈ (B1 ∩B2). Thus in any case the path from t to m or t to

n through u and u′ is longer than B2. But it is impossible, since s is an mPF detour

g eccentric node of t. Hence emPFDg(t) = diammPFDg(G) i.e, s ∈ PermPFDg(G).

Case 2: When s is an internal node in G, then there exists a connection between

s to m and a to n, because of connectedness of G. Then t − s mPF g detour can be

extended to m or n. This is impossible, because s is an mPF detour g eccentric node

of t. Hence emPFDg(t) = diammPFDg(G) i.e, s is an mPF detour g peripheral node of

G.
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5.3 mPF detour g boundary node and mPF detour

g interior node of an mPFG

In this section we defined mPF detour g boundary node and mPF detour g interior

node of an mPFG G and discussed some results on these nodes.

Definition 5.3.1. A vertex k in a connected mPFG G is an mPF detour g boundary

node of a node l if mPFDg(l, k) ≥ mPFDg(l, j) for each j in G, where j is a neighbor

of k. The set of every mPF detours g boundary nodes of l symbolized as mPFDgB(l).

The set of every mPF detour g boundary nodes of G, Symbolized as mPFDgB(G).

Example 5.3.1. For the connected mPFG G shown in Figure 5.3, mPFDgB(q) =

{s, w}, mPFDgB(r) = {q, v, w}, mPFDgB(s) = {q, w, v}, mPFDgB(t) = {q, s, w, v},

mPFDgB(u) = {q, v, w}, mPFDgB(w) = {q, s, v},mPFDgB(v) = {q, w}. Here

q, s, v, w are the m-polar detour g- fuzzy boundary nodes of G.
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Figure 5.3: Connected 3PF graph G with boundary nodes {a, c, f, g}.

Definition 5.3.2. The set of every neighbors of s is symbolized as NmPF (s) and the

set of every strong mPF neighbors of u is symbolized as NmPFS(s).

Definition 5.3.3. If an mPF subgraph formed by strong m-polar neighbor of a node

a in an mPFG G, form a complete mPFG then the node b is said to be a complete

node of G.
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Theorem 5.3.1. A node in a complete mPFG is mPF detour g boundary node of

every other node if and only if the node is complete.

Proof. Let a node l be a node in a connected mPFG G and l is complete node. Let

k be another node of G. Each arc in G is strong, because of completeness of G. So

mPFDg(k, l) = n− 1 = mPFDg(k, s),∀s ∈ N(l). Then l ∈ mPFDGB(a).

Conversely, let l be an mPF detour g boundary node of every other node. Then each

arc in G is strong, because of completeness of G. Then mPFDg(k, l) = n− 1, ∀k ∈ G.

So all neighbors of l are strong. Hence by Definition 4.3, the node l is complete.

Theorem 5.3.2. If a vertex in a connected mPFG G is a complete vertex, then the

vertex is an mPF detour g boundary node of every other node.

Proof. Here a vertex l is a complete vertex in a connected mPFG G. If k is another

vertex of G. Assume that k = l0, l1, . . . , lk−1, lk = l be a k − l mPF g-detour and

c ∈ NmPFS(b). Here two cases will aries

Case 1: If c = lk−1, then mPFDg(k, c) ≤ mPFDg(k, l). Hence, l be a m-polar

detour g-fuzzy boundary node of k.

Case 2: If c 6= lk−1, since c is a strong neighbor of l, so a arc (c, lk−1) is a strong mPF

arc and also c 6= lk−1. So the length of a path k = l0, l1, . . . , lk−1, c, lk = l is greater than

the length of a path k = l0, l1, . . . lk−1, lk = l. That is mPFDg(k, c) ≤ mPFDg(k, l).

Hence, l ∈ mPFDgB(k).
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Figure 5.4: Connected mPFG G.
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Remark 5.3.1. It may not be possible to converse the above Theorem. For example,

let the mPFG of Figure 5.4. We see that s is an mPF detour g boundary node of every

another nodes, but s is not a complete node.

Theorem 5.3.3. A connected mPFG G is an mPFT iff G is mPF detour g graph.

Proof. Between any two vertices in mPFT G, there is exactly one strong mPFP. So

mPFDg(l, k) = mPFDg(l, k) for any two nodes l, k in G. Hence, G is mPF g-detour

graph.

Conversely, letG be anmPF g-detour graph, which has n nodes. ThenmPFDg(l, k) =

mPFDg(l, k) for any two nodes l, k in G. If n = 2 then G is an mPFT.

Let n ≥ 3. If G is not an mPFT. So two nodes a, b exist in G for which there are at

least two strong mPFPs between a and b. Let B1 and B2 be two a− b strong mPFPs.

So, B1 ∪ B2 has a cycle C(say) in G. If the nodes p and q are adjacent nodes in G,

then we have mPFDg(q, p) = 1 and mPFDg(q, p) > 1. This contradicts the fact that

mPFDg(q, p) = mPFDg(q, p). So, G is an mPFT.

Theorem 5.3.4. In an mPFT G, a vertex l is an mPF detour g boundary node of G

iff l cannot be an mPFCN of G.

Proof. Suppose a node l in mPFT G is an mPF detour g boundary node of a node g

in G. If l is an mPFCN of G.

Let E be an mPF maximum spanning tree (MSTmPF (G)) in G and this tree is

unique in G. Again since l is an mPFCN that means l cannot be an internal node

of E. Let p ∈ NmP.F.S(l) s.t. p does not lie on the mPF detour in E. Therefore,

mPFDg(q, z) is the same when q, z be any two nodes of E. But mPFDg(g, p) =

mPFDg(g, l) + mPFDg(l, p) > mPFDg(g, l). This contradicts the fact that l ∈

mPFDgB(G). Therefore the node l cannot be an mPFCN of G.

Conversely, suppose l be not an mPFCN of the mPFG G. So l is the end vertex of

MSTmPF (G), which is unique. Then l has a strong neighbor which is also unique [130].

So there does not exist any extension of any mPF g-detour for a node p to l. Hence,

l ∈ mPFDg(G).

Definition 5.3.4. A node l in an mPFG G is an mPFEN of G if h is only strong

mPF neighbor of l, where h ∈ G.
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Example 5.3.2. For the mPFG G in Fig. 5.3, the nodes q, v, w are mPFEN of G.

Theorem 5.3.5. A vertex a in an mPFT G is an mPF detour g boundary node then

b is an mPFEN. Again if b is an mPFEN then a is an mPF detour g boundary node

Proof. Suppose a is an belonging in mPFDgB(b) in an mPFT G. Let E be a

MSTmPF (G) in G, which is unique in G [130]. By Theorem 4.9, each node of G

is an mPFCN of G or an mPFEN of G. So by Theorem 4.9, a must be an mPFEN of

G.

Conversely, let a be an mPFEN of an mPFT G. Let E be the MSTmPF (G) of G.

Then a is an mPFEN of E. Hence, a is not an mPFCN. Therefore, by Theorem 4.9,

a ∈ mPFDgB(G).

In a connected mPFG G, a node b lie between the nodes a and c in the sense of

mPF detour g-distance if mPFDg(a, c) = mPFDg(a, b) +mPFDg(b, c).

Definition 5.3.5. In a connected mPFG G, a vertex b is an m-polar detour g−fuzzy

interior nodes if for each node a in G different from b, there is a node c in G for which

mPFDg(a, c) = mPFDg(a, b) +mPFDg(b, c).

Definition 5.3.6. The set of all mPF detour g-interior node of G, Symbolized as

IntmPFDg(G), form an mPFSG of G.

Example 5.3.3. For the mPFG in Figure 5.3, IntmP.F.Dg(G) = {r, u, t}.

Theorem 5.3.6. A vertex in a connected mPFG G is an mPF detour g boundary

node of G iff the node cannot be an mPF detour g interior node of G.

Proof. Let b ∈ mPFDgB(a) in a connectedmPFGG. If possible, let b ∈ IntmPFDg(G).

So there a node c exists different from a and b s.t. b lies between a and c. Let

U : a = b1, b2, . . . , b = bk, bk+1, . . . , bl = c be a a − c mPF g−detour and 1 < k < l.

Then bk+1 ∈ NmP.F.S(b), and this implies mPFDg(a, bk+1) > mPFDg(a, b), so contra-

diction arise. Hence b /∈ G.

Conversely, let the node b /∈ IntmPFDg(G). Then a node a exist in G for which

any node c different from b and a, mPFDg(a, c) 6= mPFDg(a, b) + mPFDg(b, c).

Therefore, mPFDg(a, q) ≤ mPFDg(a, b) where q ∈ NmP.F.S(b). This implies that b is

a m-polar detour g-fuzzy boundary node of a.
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Figure 5.5: Connected mPFG G.

Example 5.3.4. For the Connected mPFG G shown in Figure 5.5, mPFDgB(s) =

{t}, mPFDgB(q) = {t}, mPFDgB(r) = {t}, mPFDgB(u) = {q, t}, mPFDgB(t) =

{q}. Here q, t are the m-polar detour g- fuzzy boundary nodes of G, but q, t are not

m-polar detour g- fuzzy interior nodes of G. Again s, u, r are m-polar detour g- fuzzy

interior nodes of G but they are not m-polar detour g- fuzzy boundary nodes of G. So

if we consider any Connected mPFG then we can easily show that the above Theorem

is true.

Theorem 5.3.7. A mPFEN of a connected mPFG G cannot be an mPF detour g

interior node.

Proof. Let q be an mPFEN of an mPFG G. Then there is only one mPF strong

neighbor of q. So there is no strong mPF g-detour for which b lies between a and c,

where a and c be two nodes of G and also different from b. Hence, b /∈ IntmPFDg(G).

5.4 Application
Many problems in the real world involve multipolar information or multi-agents

or multi-objects. Compared to a fuzzy graph, mPFG gives more accurate and exact
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results for real problems. Here, we present an application of mPFG about how a person

can reach his destination in a short time using a strong path. In modern days, if we go

from one town to another town then we usually use car, train, bus, etc. The availability

of buses or trains are not the same everywhere. When a person travels to work or school

every day, this form of journey is commonly known as commuting. Some people visit

other states, towns or countries during their holidays. If the communication system is

good then the journey will be good. Again, if the economic system of a city is good

then the condition of the road is generally good. This communication system depends

not only on the economic condition but also on many other things such as for example

infrastructure, environment, fire safety, security, etc.

Here, we present a model of 3PFG which is used to find the shortest strong path

between two cities. Fig. 5.6 shows a model of the road network which is represented

by a 3PFG G = (V,A,B). Here the vertices stand for cities and each edge of G stands

for the roads between two cities. Here six cities are considered and they are denoted

as V = {V6, V5, V4, V3, V2, V1}. Then the membership value of every vertices depended

on three criterion namely {environment, economic system,

infrastructure } and the membership value of each road depended on three crite-

rion namely {Transportation availability, traffic, road length } and these characteris-

tics are uncertain. Using the relation B(u, v) ≤ min{A(u), A(v)} for all (u, v) ∈ E, we

calculated Edge membership value and edge membership value represent the relation

between two cities.

w

w w

w

wV1

V6 V5

V3V2
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Figure 5.6: 3PFG G corresponding to the communication between some towns.

Suppose a person has started his/her journey from V1 and he/she wants to go to
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the place V5. Then his first goal is to find the strong path between V1 and V5. And

then he/she wants to find out the shortest path between those strong paths. So, he

try to find out shortest strong path between V1 and V5 for his safe journey. For the

3PFG G in Figure 5.6, the arcs (V5, V4), (V4, V3), (V3, V6), (V5, V6), (V6, V2), (V2, V1) are

strong arcs. The paths V1− V2− V6− V3− V4− V5 and V1− V2− V6− V5 are only two

strong paths from V1 to V5. So mPFDg(V1, V5) = 5 and B.F.dg(V1, V5) = 3. So the

path V1 − V2 − V6 − V5 is the shortest strong path from V1 to V5. If a person wants to

go from V1 to V5 in the shortest path with the best communication system, then for

him the path V1 − V2 − V6 − V5 will be the best route to go for his safe journey.

5.5 Summary

In this article, we have introduced mPF detour g-distance, mPF detour g-boundary

nodes, mPF detour g-interior nodes in mPFGs and properties of these. We initiated

theorems on mPF detour g-interior node, mPF detour g-boundary node, mPF cut

node in mPFG, using maximum mPF spanning tree. We are extending our research

work to define connectivity index on mPFG and its properties and its applications on

real life problems etc.
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