
Chapter 3

Types of arcs in m-polar fuzzy

graphs∗

3.1 Introduction

Graph operations are a very important topic in graph theory. Also, they are con-

veniently used in many combinatorial applications, operations research, algebra, ge-

ometry, number theory. They are suitable for construction in different situations. For

example, we handle complex objects in partition theory. A typical object is a fuzzy

graph and fuzzy hypergraph with a large chromatic number that is not able to precisely

measure the chromatic number of such graphs. In these cases the main role of these

operations is to resolve problems. Hence, in this chapter, at first mPFP, mPFC in an

mPFG are defined. The strength of a connectedness of mPFP is introduced. Next,

the strongest and strong mPFP, mPFBs, mPFCNs, mPFT and mPFFs in an mPFG

are considered. Also, it is proved that an arc of mPF tree is strong mPFE iff it is an

mPFB. Actually, mPF end nodes are established in mPFG and certain characteristics

are investigated. At the end, there is also the application of the strongest path prob-

lem. Also we presented the idea of δ∗-strong mPFE,δ-strong mPFE, β-strong mPFE

and α-strong mPFE of mPFGs. Next we studied several properties on these arcs. At

the end, there is also an application of a strong mPFP problem.

∗A part of the work presented in this chapter is published in Neural Processing Letters, 50, 771-784

(2019).
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3.2 m-polar fuzzy bridges and m-polar fuzzy cut

nodes
In this section, m-polar fuzzy bridges(mPFBs) andm-polar fuzzy cut nodes (mPFCNs)

are described on mPFGs and some features are provided.

Definition 3.2.1. Let s′, t′ be two different nodes in mPFG G. Let the (s′, t′) edge be

removed from G then it is a partial mPF subgraph G′ of G. That means G′ = (V,A,B′)

in which ∀ i = 1, 2, 3, . . . ,m, pi ◦ B(s′, t′) = 0 and pi ◦ B′(q′, r′) = pi ◦ B(q′, r′) for

all other pairs (q′, r′). The edge (s′, t′) is a mPFB in G if ∀ i, (pi ◦ B′(q, r))∞ <

(pi ◦B(q′, r′))∞ for some q′, r′ ∈ V .
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Figure 3.1: The arc (q′, s′) is bridge of G.

Example 3.2.1. The Fig. 3.1 shows a 3PFG G of G′ = (V,E) where, V = {q′, r′, s′, t′, u′}

and E = {q′s′, s′t′, s′r′, t′u′, s′u′, u′r′, q′r′}.

We consider all paths from q′ to s′. They are q′−r′−u′−t′−s′, q′−r′−u′−s′, q′−r′−

s′ and q′− s′ and strength of those paths are (0.3, 0.1, 0.1), (0.4, 0.1, 0.1), (0.5, 0.3, 0.2)

and (0.8, 0.5, 0.5) respectively. So, CONNG(q′, s′) = (0.8, 0.5, 0.5) is the strength of

connectedness between q′ and s′. Now we are removing the (q′, s′) arc from G then the

strength of connectedness between q′ and s′ in G − (q′, s′) is CONNG−(q′,s′)(q
′, s′) =

(0.5, 0.3, 0.2). We see that CONNG−(q′,s′)(q
′, s′) = (0.5, 0.3, 0.2) < (0.8, 0.5, 0.5) =

CONNG(q′, s′). So, (q′, s′) is a mPFB.



3.2. m-polar fuzzy bridges and m-polar fuzzy cut nodes 33

Definition 3.2.2. A node s′ ∈ V is called the mPFCN of G if in the mPFG G −

s′ getting from G by substituting pi ◦ A(s′) = 0 ∀ i = 1, 2, 3, . . . ,m, we have pi ◦

CONNG−s′(t
′, u′) < pi ◦ CONNG(t′, u′) for some t′, u′ ∈ V , ∀ i and s′ 6= t′ 6= u′.
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Figure 3.2: The vertex s′ is a mPFCN of G.

Example 3.2.2. The Fig. 3.2 shows a 3PFG G of G′, where V = {q′, r′, s′, t′, u′} and

E = {q′r′, r′s′, s′t′, r′t′, t′u′, q′u′}. The paths from r′−t′, r′−s′−t′ and r′−q′−u′−t′ and

strength of those paths are (0.8, 0.4, 0.5), (0.9, 0.5, 0.6) and (0.6, 0.2, 0.1) respectively.

So the strength of connectedness between r′ and t′ in G and G−s′ are CONNG(r′, t′) =

(0.9, 0.5, 0.6) and CONNG−s′(r
′, t′) = (0.8, 0.4, 0.5) respectively. So, s′ is a mPFCN

of G.

Proposition 3.2.1. If G1 = (C,D) is an mPFSG of G = (A,B), then ∀ s, t ∈ V we

have pi ◦ CONNG1(s, t) ≤ pi ◦ CONNG(s, t).

Theorem 3.2.1. Let G be mPFG. Then the following statements are equivalent.

(i) (s′, t′) is an mPFB.

(ii)
(
pi ◦ B′(s′, t′)

)∞
< (pi ◦ B(s′, t′)) ∀ i = 1, 2, 3, . . . ,m. Here G = (V,A,B′) is a

partial mPFSG of G obtained by removing the edge (s′, t′).

(iii) (s′, t′) is not the weakest mPFE of any mPFC.
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Proof. (2)→ (1)

Suppose (x′, y′) is not an mPFB, then ∀ i = 1, 2, 3, . . . ,m,

(pi ◦B′(s′, t′))∞ = (pi ◦B(s′, t′))∞ ≥ pi ◦B(s′, t′).

It is a contradiction.

So, (s′, t′) is an mPFB.

(1)→ (3)

If (s′, t′) is a weakest edge of an mPFE, then path with edge (s′, t′) can be trans-

formed into a path not containing (s′, t′) but as strong at least, using the entire rest

of the cycle as a path between s′ and t′. Thus (s′, t′) could not be an mPFB.

(3)→ (2)

If ∀ i, (pi ◦ B′(s′, t′))∞ ≥ (pi ◦ B(s′, t′)), there is a path between s′ and t′ which

does not contain (s′, t′), Bn
i (s′, t′) ≥ pi ◦B(s′, t′) and this path along with (s′, t′) is an

mPFC whose (s′, t′) ia an weakest mPFE.

Theorem 3.2.2. Every mPFB in an mPFG G is a strong mPFE.

Proof. When (s′, t′) is not strong, then pi ◦B(s′, t′) < pi ◦CONNG−(s′,t′)(s
′, t′) ∀ i. Let

P be the strongest mPFP between s′ and t′ in G− (s′, t′). The strength of this path

is CONNG−(s′,t′)(s
′, t′). If we add (s′, t′) to P then we get a mPFC where (s′, t′) is the

weakest mPFE of this mPFC, hence (s′, t′) is not an mPFB of G (by Theorem 4.5).

This indicates that an mPFB must be a strong mPFE.

Theorem 3.2.3. If (s′, t′) is a strong mPFE in mPFG G iff pi ◦ B(s′, t′) = pi ◦

CONNG(s′, t′) ∀ i.

Proof. We know, pi ◦CONNG(s′, t′) ≥ pi ◦B(s′, t′) ∀ i. when an mPFP from s′ to t′

includes (s′, t′), i-th component of strength of connectedness ≤ pi ◦ B(s′, t′). That is,

pi ◦ CONNG(s′, t′) ≥ pi ◦ B(s′, t′) ∀ i. If it does not have (s′, t′), that implies it is in

G− (s′, t′). So i-th component of strength of connectedness ≤ pi ◦CONNG−(s′,t′)(s
′, t′)

≤ pi◦B(s′, t′), since (s′, t′) is strong. Hence in each case the strength of a path between

s′ and t′ is at most B(s′, t′), so that pi ◦CONNG(s′, t′) ≤ pi ◦B(s′, t′) ∀ i. Conversely,

if ∀ i, pi ◦B(s′, t′) = pi ◦CONNG(s′, t′) we get pi ◦B(s′, t′) ≥ pi ◦CONNG−(s′,t′)(s
′, t′).

So (s′, t′) is a strong mPFE.
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Theorem 3.2.4. Any two vertices s′ and t′ are connected by a strong mPFP in a

connected mPFG G.

Proof. Since G is connected mPFG, ∃ a path P : s′ = s0, s1, . . . , sn = t′ from s′ to t′

s.t pi ◦ B(sk−1, sk) > 0 ∀ i = 1, 2, 3, . . . ,m and 1 ≤ k ≤ n. If (sk−1, sk) is not strong

then we get pi ◦ B(xk−1, xk) < pi ◦ CONNH−(sk−1,sk)(sk−1,sk), ∀ i. Hence, a path Pj

from sk−1 to sk exist whose i-th component of strength of connectedness is larger than

pi ◦ B(sk−1, sk) ∀ i. If the path Pj does not have a strong mPFE then this statement

can be repeated. The argument obviously can not arbitrarily be replicated frequently;

So we can figure out that the s and t vertices link by a strong mPFP.

Theorem 3.2.5. At least two strong mPF neighbors are included in a mPFCN.

Proof. Let the vertex s∗ be deleted from G then CONNG(q∗, r∗) is reduced; this

indicates there exists a strongest mPFP P from q∗ to r∗ which must be passes through

s∗, say q∗, . . . , t∗, s∗, v∗, . . . , r∗. If (t∗, s∗) is not strong mPFP then we have ∀ i, pi ◦

B(t∗, s∗) < pi◦CONNG(t∗, s∗) after deletion (t∗, s∗); so there is a path P ′ from t∗ to s∗,

except the (t∗, s∗) edge, whose i-th component of strength of connectedness is stronger

than pi ◦B(t∗, s∗) ∀ i. Let the preceding node of s∗ be t on P ′; as the i-th strength of

connectedness of P ′ is at most pi ◦B(t, s∗), then pi ◦B′(t∗, s∗) > pi ◦B(t∗, s∗) must be

provided. The claim would return if (t, s∗) is not strong mPFE. We eventually find t∗

s.t (t′, s) is strong mPFE because it can not endlessly be repeated. Similarly, we also

found that v∗ s.t (s, v′) is strong mPFE. When t′ = v′, we obtain a path P ′′ from q∗

to r∗ containing t′ = v′ and the i-th component of strength of connectedness of P ′′ is

stronger than P , this is means that deletion of s∗ would not reduce CONNG(q∗, r∗),

which contradict our statement. Hence s∗ has at least two strong mPF neighbors.

3.3 m-polar fuzzy trees and m-polar fuzzy forests
m-polar fuzzy trees(mPFTs) and m-polar fuzzy forests(mPFFs) on mPFG are de-

scribed in the following section. In addition, some properties of mPFT and mPFFs

on mPFGs are added .

Definition 3.3.1. An mPFSG H of G′ = (V,E) is defined by an mPFSS A : V −→

[0, 1]m of V and an mPFSS B : V × V −→ [0, 1]m of E s.t ∀ i = 1, 2, 3, . . . ,m;

pi ◦ B(s′, t′) ≤ min{pi ◦ A(s′), pi ◦ A(t′)} ∀ s′, t′ ∈ V . H is called full mPFSG of G′
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if its mPF support is all of G′, i.e. if for at least one i; pi ◦ A(s′) > 0 ∀ s′ ∈ V and

pi ◦B(s′, t′) > 0 ∀ (s′, t′) ∈ E.

Definition 3.3.2. A fuzzy subgraph H = (V,A′, B′) is a partial mPFSG of an mPFG

G = (V,A,B) if A′ ⊆ A and B′ ⊆ B. If ∀ i, pi ◦ A′(x′) = pi ◦ A(s′) ∀ s′ then H is

said to be spanning mPFSG of G .

Definition 3.3.3. An mPFG G is an mPFF if it has an partial spanning mPFSG

H = (V,A,D) which is a forest, where for each edges (s′, t′) not in H (i.e. D(s′, t′) =

0), we get pi ◦ B(s′, t′) < (pi ◦ D(s′, t′))∞ ∀ i. To put it another way, if (s′, t′) is

in G but (s′, t′) is not in H and then a path in H exits between s′ and t′ whose i-th

component of strength of connectedness is larger than pi ◦B(s′, t′) ∀ i.
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Figure 3.3: Illustration of example 3.3.1.

Example 3.3.1. The Fig. 3.3 shows an 3PFG G of G′ = (V,E), where V = {q′, r′, s′}

and E = {q′r′, r′s′, s′q′}. F = (V,A,D) be the partial 3PFSG of G where (r′, s′) is not

in F and D(q′, r′) = (1, 0.7, 0.8) and D(q′, s′) = (1, 0.9, 0.7) respectively. And now we

see that clearly, B(r′, s′) = (0.5, 0.4, 0.3) < CONNF (r′, s′) = (1, 0.7, 0.7). So, G is an

mPFF.

Definition 3.3.4. A full mPFSG of G′ is referred to as an m-polar F-tree or m-polar

F-cycle if G′ is a tree or cycle respectively.
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Let us say there are at least two vertices in a nontrivial tree and three vertices in a

cycle.

Definition 3.3.5. An mPFG G is an mPFT if it has a spanning mPFSG H ′ that is

an m-polar F-tree, and is s.t pi ◦B′(s, t) = 0 implies pi ◦B(s, t) < pi ◦ CONNH′(s, t)

∀ i,.
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Figure 3.4: Illustration of example 3.3.2.

Example 3.3.2. The Fig. 3.4 shows an 3PFG G of G′ = (V,E) where V =

{s1, s2, s3, s4} and E = {s1s2, s2s3, s3s4, s1s4}.. H ′ = (V,A,B′) be the spanning 3PFSG

of G where (s2, s3) is not in H ′ and B′(s1, s4) = (1, 0.6, 0.7), B′(s1, s2) = (1, 0.6, 0.8)

and B′(s4, s3) = (0.7, 0.8, 0.9). Here, H ′ be a 3PFT and B(s2, s3) = (0.5, 0.4, 0.2) <

(0.7, 0.6, 0.7) = CONNH′(s2, s3). Then G is an mPFT using the concept of mPFT.
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Theorem 3.3.1. G be an mPFF iff in any mPFC of G, there is an arc (s′, t′) s.t ∀ i,

pi ◦ B(s′, t′) < (pi ◦ B′(s′, t′))∞, where G′ = (V,A,B′) is the partial mPFSG obtained

by removal of the edge (s′, t′) from G.

Proof. Let (s′, t′) be the edge. Assume the edge (s′, t′) belongs to an mPFC having

the property that pi ◦ B(s′, t′) is least ∀ i. The resulting partial mPFSG fulfils the

property of an mPFF if (s′, t′) is removed from G. If cycles are present in this graph,

we may repeat the above procedure. Now, the edge that has been removed previously

is not stronger than the current edge at every step. Thus, only edges which have not

still been removed include the path guaranteed by the Theorem ’s property. When

there are no cycles in G, the getting partial mPFSG becomes an mPFF F . Let (s′, t′)

edge is not in F , then (s′, t′) edge is removed to create F and between s′ and t′, there

is an mPFP which is more stronger than B(s′, t′) and which is not involving (s′, t′) or

any of the edges removed before it. If the mPFP described above has induced edges

that are later removed, they can be transformed around it using an mPFP of still

stronger mPFE; The path can be diverted further if one of them was removed later

and so on. At last, this method ultimately stabilizes with a path consisting entirely of

edges of F . Thus G be an mPFF.

Conversely, if G is an mPFF and P is any mPFC, then some edge (s′, t′) of P is

not belonging to F . Thus using the concept of an mPFF we have ∀ i, pi ◦ B(s′, t′) <

(pi ◦D(s′, t′))∞ ≤ (pi ◦B′(s′, t′))∞.

Theorem 3.3.2. When there are at most one strongest mPFP to any two vertices

of G then the G must be an mPFF.

Proof. Suppose G is not an mPFF. Then by the Theorem 5.8, there is an mPFC P in

G s.t. ∀ i, pi ◦B(s∗, t∗) ≥ pi ◦B′(s∗, t∗) ∀ arcs (s∗, t∗) of P . Thus (s∗, t∗) is a strongest

mPFP from s∗ to t∗. If we declare the edge (s∗, t∗) be a weakest mPFE of P , it means

that the remaining P is also a strongest mPFP between s∗ and t∗, a contradiction.

So, if there is at most one strongest mPFP to any two vertices of G then the G must

be an mPFF.

Theorem 3.3.3. The F edges would be just mPFBs of G, while G is a mPFF.

Proof. An edge (s∗, t∗) that is not present in F cannot be an mPFB since ∀ i, pi ◦

B(s∗, t∗) < (pi ◦ D(s∗, t∗))∞ ≤ (pi ◦ B′(s∗, t∗))∞. Assume that (s∗, t∗) is an arc in
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F . If it was not an mPFB, we had an mPFP P between s∗ and t∗, not belonging

(s∗, t∗), then its i-th component of strength of connectedness ≥ pi ◦B(s∗, t∗) ∀ i. The

path must have no edges in F because F has no cycles and is an mPFF. However,

by definition, any such (uj, vj) edge may be substituted by an mPFP Fj in F of i-th

component of strength of connectedness pi ◦B(s∗, t∗) ∀ i. Now Fj is unable to include

(s∗, t∗) since i-th strength of connectedness of all its edges are wholly stronger than

pi ◦ B(u, v) ≥ pi ◦ B(s∗, t∗). Thus by changing every (uj, vj) by Fj, we can construct

an mPFP in F from s∗ to t∗ that does not involve (a∗, b∗) which gives us an mPFC in

F , a contradiction.

Theorem 3.3.4. If G is an mPFT, an arc of G is strong mPFE iff it is an arc of

H ′(spanning mPFSG of G).

Proof. If (s∗, t∗) edge is not in H ′, we get pi ◦ B(s∗, t∗) < pi ◦ CONNH′(s
∗, t∗); but

because (s∗, t∗) is strong we must have pi ◦B(s∗, t∗) ≥ pi ◦ CONNG−(s∗,t∗)

(s∗, t∗) ≥ pi ◦ CONNH′(s
∗, t∗) as the edge (s∗, t∗) does not involve to H ′, contraction.

Conversely, suppose (s∗, t∗) is in H ′ but not a strong mPFE of G; thus pi ◦B(s∗, t∗) <

pi ◦ CONNG−(s∗,t∗)(s
∗, t∗). The maximum strength of the from s∗ to t∗ in G− (s∗, t∗)

be P , be mPFP. The i-th strength of connectedness of P is pi ◦CONNG−(s∗,t∗)(s
∗, t∗),

The weakest arc of the cycle, which is created by the adjacent (s∗, t∗) to P , is (s∗, t∗).

According to the above theory, (s∗, t∗) is an mPFB, so by Theorem 4.4, (s∗, t∗) cannot

make it the weakest mPFE of an mPFC. This is a contradiction. Hence (s∗, t∗) be the

strong mPFE of G.

Corollary 3.3.1. An arc of mPFT is strong mPFE iff it is an mPFB.

Proof. A strong mPFE of G must be an arc of H ′ (by Theorem 5.9), hence must be

mPFB of G (by Theorem 4.3). By proposition 4.4, the converse is true by proposal

4.4,even if G is not a mPFT.

Theorem 3.3.5. G is an mPFT iff a unique mPFP is found in G between any two

vertices of G.

Proof. By Theorem 4.6, if the nodes s∗ and t∗ are in G then there a strong mPFP P

exists between s∗ and t∗. By the Theory 5.9, P is completely belonging in H ′, where
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H ′ is the spanning m-polar F-tree. Since H ′ is an m-polar F -tree, a unique path in

H ′ between s∗ and t∗ is available; therefore P is unique. Conversely, we noticed that

a connected mPFG G is an mPFT iff in any mPFC of G ∃ an arc (s∗, t∗) for which

pi ◦ B(s∗, t∗) < CONNG−(s∗,t∗)(s
∗, t∗). Hance, if G is not an mPFT then an mPFC

P exists in G s.t. pi ◦ B(s∗, t∗) ≥ CONNG−(s∗,t∗)(s
∗, t∗) for every edge (s∗, t∗) of P .

That is every arc of P is strong mPFE. Thus two strong mPFPs exist between any

two arbitrary vertices u∗ and v∗ on P , a contradiction. This leads to the result.

3.4 Different types of arcs and their results
In this section, α-strong mPFE, β-strong mPFE and δ mPFE on mPFG are defined

and some characterisation are given. some properties of α-strong mPFE, β-strong

mPFE and δ mPFE on mPFG are introduced.

Definition 3.4.1. Let G be an mPFG and (s, t) be an arc in G. If ∀ i = 1, 2, 3, . . . ,m,

pi◦B(s, t) > pi◦CONNG−(s,t)(s, t), pi◦B(s, t) = pi◦CONNG−(s,t)(s, t) and pi◦B(s, t) <

pi◦CONNG−(s,t)(s, t) then the (s, t) arc is called α-strong mPFE, β-strong mPFE and

δ mPFE respectively.

Definition 3.4.2. Let G be an mPFG and (r, s) be an arc in G. The arc (r, s) is

a δ∗-mPFE if ∀ i = 1, 2, 3, . . . ,m, pi ◦ B(r, s) > pi ◦ B(p, q) where (p, q) is a weakest

mPFE of G.

Definition 3.4.3. A path in an mPFG G is named an α-strong mPFP when all of

the arcs in it are α-strong mPFE and is named a β-strong mPFP when all of the arcs

in it are β-strong mPFE.

Example 3.4.1. The Fig. 3.5 shows a 3PFG G of the crisp graph G′ = (V,E) where

V = {p, q, r, t} and E = {pq, qr, rt, tp, pr, qt}. Here, (q, t) and (q, r) are α-strong

mPFEs, (p, q) and (p, t) are β-strong mPFEs and (r, p) and (r, t) are δ-strong mPFEs.

Again arc (r, t) is a δ∗ arc as B(r, t) = (0.3, 0.4, 0.5) > (0.1, 0.2, 0.3) = B(p, r), where

(p, r) is a weakest mPFE of G.

Definition 3.4.4. A maximum spanning mPFT of a connected mPFFG G is an

spanning mPFSG T of G, that is a m polar F-tree, s.t CONNG(s, t) is the strength

of the unique strongest st mPFP in T ∀ s, t ∈ G.
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Figure 3.5: Different types of arc on mPFG G

Theorem 3.4.1. An arc (s, t) in an mPFG G is an strongest s − t mPFP iff (s, t)

is either α-strong mPFE or β-strong mPFE.

Proof. Let G be an mPFG and (s, t) be an arc in G. Consider P be a path between s

and t. Then using the concept of strength of an mPFP, ∀ i = 1, 2, 3, . . . ,m

ith component of strength of P = pi ◦B(s, t). (3.1)

Let P ∗ is a strongest mPF path, then the i th component of strength of connectedness

of P ∗ = pi ◦ CONNG(s, t). From 3.1, ∀ i

pi ◦B(s, t) = pi ◦ CONNG(s, t). (3.2)

The i th component of strength of connectedness of P ∗ ≥ i th component of strength

of connectedness of all other uv paths. In particular, ∀ i, i th component of strength

of connectedness of P ∗ ≥ CONNG−(s,t)(s, t). Thus ∀ i

pi ◦CONNG(s, t) ≥ pi ◦CONNG−(s,t)(a, b). (3.3)

Now from 3.2 and 3.3 we have,

pi ◦B(s, t) ≥≥ pi ◦ CONNG−(s,t)(s, t)

⇒ Arc (s, t) is either α-strong mPFE or β-strong mPFE.

Conversely, assume that arc (a, b) is either β-strong mPFE or α-strong mPFE. Then

∀ i, pi ◦B(s, t) ≥ pi ◦ CONNG−(s,t)(s, t). ⇒ pi ◦ CONNG(s, t) = pi ◦B(s, t).

i.e, pi ◦ CONNG(s, t) is the i- th component of strength of connectedness of P ∗.

So, P ∗ is a mPFP in G, which is the strongest mPFP.

Theorem 3.4.2. Let an mPFG be G and P ∗ be a s0sn mPFP. Let (s, t) be any arc

in P ∗ such that i th component of strength of P ∗ = pi ◦B(s, t). Then P ∗ is a strongest

s0sn mPFP if (s, t) is a strong mPFE as well as it is the only one weakest arc of P ∗.
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Proof. Here, G is an mPFG. Let P ∗ : s0 − s1 − s2 − s3 − ... − sn be a a0an mPFP

in G with ith component strength of P ∗ = pi ◦ B(sj−1, sj) for some j = 1, 2, 3, . . . , n

and i = 1, 2, 3, . . . ,m . Let a strong mPFE be (sj−1, sj) and which is an the unique

weakest arc in P ∗.

To prove P ∗ is the strongest s0sn mPFP. Let P ∗ is not the strongest s0sn mPFP. Let

P1 : s0− t1− t2− t3− ...− tn−1− sn be a strongest s0sn mPFP in G, in which every of

sk, k = 1, 2, 3, . . . , n−1 and tj, j = 1, 2, 3, . . . , n−1 may be same. As ith component of

strength of P1 is greater than ith component of strength of P ∗, we have ith component

of strength of each arc of P1 > pi ◦ B(sj−1, sj). Also remark that arc (sj−1, sj) is an

uncommon arc of P ∗ and P1. Therefore P ∗
⋃
P1 will contain at least onemPFC and let

C be one similar mPFC, where (si−1, si) is the only weakest mPFE. Consider a sj−1sj

path P ′ in C not having the arc (sj−1, sj). Obviously pi ◦B(sj−1, sj) < ith component

of strength of P ′ and ith component of strength of P ′ ≤ pi ◦CONNG−(sj−1,sj)(sj−1, sj).

pi ◦ B(sj−1, sj) < CONNG−(sj−1,sj)(sj−1, sj), which implies (sj−1, sj) is a δ- mPFE,

that contradicts that (sj−1, sj) is a strong mPFE. Therefore, P ∗ is the strongest s0sn

mPFP in G.

Theorem 3.4.3. An arc (s, t) in an mPFG G is a δ-strong mPFP iff (s, t) is the

unique weakest arc of at least one cycle in G.

Proof. SupposeG is anmPFG. Also, let (s, t) arc be a δ-strongmPFE inG. Therefore,

using the definition, pi ◦ B(s, t) < pi ◦ CONNG−(s,t)(s, t). i.e, there at least a path P

exists between s and t and which does not contain the arc (s, t) with ith component

of the strength of P > pi ◦ B(s, t). This path P together with the arc (s, t) makes a

mPFC where (s, t) is the unique weakest arc. Conversely, let (s, t) be the only one

weakest arc of a cycle C in G. Let P be the st path in C not having the arc (s, t).

Then,

pi ◦B(s, t) < i− th component of strength of P (3.4)

Let (s, t) be not a δ-arc in G. Then from definition we have,

pi ◦B(s, t) ≥ pi ◦CONNG−(s,t)(s, t) (3.5)

Also remark that

i− th component of strength of P ≤ pi ◦CONNG−(s,t)(s, t) (3.6)
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From 3.5 and 3.6, we get pi ◦ B(s, t) ≥ ith component of strength of P , which

contradicts 3.4.

Hence, (s, t) is a δ-strong mPFE in G.

Theorem 3.4.4. A strong mPFP P1 from s1 to t1 is a strongest s1t1 mPFP if P1

contains only α- strong mPFEs.

Proof. Let G be an mPFG. Here P1 be a strong mPFP between s1 and t1 and P1

contains only α- strong mPFEs. At first we thought that P1 is not the strongest

mPFP. Let Q1 be a strongest s1t1 mPFP in G. Then P1

⋃
Q1 will have at least one

cycle C and each arc of C − P1 will have strength which is larger than the strength

of P1. Thus a weakest arc of C is also an arc of P1. Suppose C contains an arc (q, r).

Let C1 be the q − r mPFP in C where C1 does not contain the arc (q, r). Then,

pi ◦B(q, r) ≤ i th component of strength C1 ≤ pi ◦ CONNG−(q,r)(q, r).

This means that (q, r) is not a α-strong mPFE, which is a contradiction. Thus P1 is

the strongest x1y1 mPFP.

Theorem 3.4.5. A strong mPFP P1 from x1 to y1 is a strongest x1y1 mPFP if P1

is the unique strong x1y1 mPFP.

Proof. Let P1 be a unique strong x1y1 mPFP in an mPFG G. If P1 is not the strongest

x1y1 mPFP in G. Let Q1 be the strongest x1y1 mPFP in G. Then, ith component

of strength of Q1 > ith component of strength of P1. i.e. for any arc (u1, v1) in Q1,

pi ◦B(u1, v1) > pi ◦B(x∗1, y
∗
1), where (x∗1, y

∗
1) is a weakest mPFE of P1.

Now we claim that Q1 is a strong x1y1 mPFP. For otherwise, if there an arc (u1, v1)

exists in Q1 which is a δ mPFE, then

pi ◦ B(x, y) < pi ◦ CONNG−(u,v)(u, v) ≤ pi ◦ CONNG(u, v) and hence pi ◦ B(u, v) <

pi ◦ CONNG(u, v).

Then there is a path that exists from u1 to v1 in G whose ith component of strength

is longer than pi ◦ B(u, v). Let it be P
′
1. Let w1 be the next node after u1, common

to Q1 and P
′
1 in the u1w1 sub mPFP of P

′
1 and w

′
1 be the node before v1, common to

Q1 and P
′
1 in the w

′
1v sub mPFP of P

′
1. (If P

′
1 and Q1 are disjoint u1v1 mPFP then

w1 = u1 and w
′
1 = v). Suppose the path P

′′
1 is consisting of the x1w1 mPFP of Q1,

w1w
′
1 path of P

′
1 and w

′
1y1 mPFP of Q1. Then P

′′
1 is an x1y1 mPFP in G such that

ith component of strength of P
′′
1 > ith component of strength of Q1, contradiction to
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the assumption that Q1 is a strongest x1y1 mPFP in G. Thus (u1, v1) cannot be a δ

mPFE and so Q1 is a strong x1y1 mPFP in G.

Next, We have therefore another path from x1 to y1, other than P , which is a

contradiction to the assumption that P is the unique strong x1y1 mPFP in G. Hence,

P should be the strongest x1y1 mPFP in G.

Theorem 3.4.6. A strong mPFP P1 from s1 to t1 is a strongest s1t1 mPFP if all

s1t1 mPFPs in G are of equal strength.

Proof. If every mPFP from x1 to y1 have the same strength, then each such path is

strongest x1y1 mPFP. In particular, a strong x1y1 mPFP is a strongest x1y1 mPFP.

Theorem 3.4.7. For an mPF bridge (x1, y1), then pi◦B(x1, y1) = pi◦CONNG(x1, y1)

∀ i = 1, 2, 3, . . . ,m.

Proof. Here (x1, y1) is an mPFB. So, ith component of CONNG(x1, y1) exceeds ith

component of B(x1, y1) ∀ i. So there is a strongest x1y1 mPFP in which ith component

of strength is longer than ith component of B(x1, y1) and each arcs of the strongest

x1y1 mPFP have ith component of strength is more than ith component of B(x1, y1)

∀ i. Now this path forms an mPFC together with the arc (x1, y1) where, (x1, y1) is the

weakest mPFE. This contradicts that (x1, y1) is an mPFB.

Theorem 3.4.8. If w is a common vertex of at least two mPFBs, then w is an

mPFCN.

Proof. Suppose (t∗1, w) and (w, t∗2) are two arcs in G and these two arcs are mPFBs.

So there is some s, t for which (t∗1, w) is present on each strongest st mPFP. If the node

w is different from s and t, then w is an mPFCN. Let one of s, t is w such that (t∗1, w)

is lie on each strongest sw mPFP or (w, t∗2) is lie on each strongest wt mPFP. Next,

suppose w is not an mPFCN, so there is at least one strongest mPFP between any two

vertices which does not containing w. Especially, there at least one strongest mPFP
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P exists between t∗1 and t∗2, not containing w. That path forms an mPFC together

with (t∗1, w) and (w, t∗2).

Here we consider two cases.

Case1: Let t∗1−w−t∗2 is a strongestmPFP between t∗1 and t∗2. Then pi◦CONNG(t∗1, t
∗
2) =

pi ◦ B(t∗1, w) ∧ pi ◦ B(w, t∗2), which is the strength of P . Hence, edges of P are strong

from B(t1, w) and B(w, t2), which implies that (t∗1, w) and (w, t∗2) are both weakest

mPFEs of an mPFC, which is a contradiction.

Case 2: Let t∗1−w− t∗2 is not the strongest mPFP. Now One of (t∗1, w), (w, t∗2) or both

become weakest mPFEs of an mPFC as t∗1 − w − t∗2 is not a strongest mPFP, which

contradicts that (t∗1, w) and (w, v∗2) are mPFBs. Hence, the result follows.

Theorem 3.4.9. Let (s1, t1) be an arc in an mPFG G. Then (s1, t1) is an mPFB iff

it is α-strong mPFE.

Proof. Let G be an mPFG and (s1, t1) is an mPFB in G. Then by Theory 3.2.1, we

have ∀ i = 1, 2, 3 . . . ,m

pi ◦ CONNG−(s1,t1)(s1, t1) < pi ◦ CONNG(s1, t1) (3.7)

By Theorem 3.4.7,

pi ◦ CONNG(s1, t1) = pi ◦B(s1, t1) (3.8)

From 3.7 and 3.8

pi ◦B(s1, t1) > pi ◦ CONNG−(s1,t1)(s1, t1)

which shows that (s1, t1) is an α-strong mPFE.

Conversely, we consider that (s1, t1) is α-strong mPFE. Then using the definition,

(s1, t1) is the unique strongest mPFP between s1 and t1 and the removal of (s1, t1) will

reduces the strength of connectedness between s1 and t1. Thus (s1, t1) is an mPFB.

Theorem 3.4.10. If G is an mPFT. Now if we remove any mPFB from G then

the strength of connectedness between its end vertices is reduced and the strength of

connectedness between some other pair of vertices is also reduced.
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Proof. Let (s∗, t∗) be an mPFB in G. Then using the above Theorem, we say that

s∗t∗ is the edge of the maximum spanning mPFT T ∗ of G. These maximum spanning

mPFT T ∗ contains unique strongest mPFPs and which strongest mPFPs joining each

pair of nodes. Next if we remove (s∗, t∗) from G then the strength of connectedness

between some other pair of vertices q∗, r∗ is reduces where, q∗ and r∗ are adjacent

with s∗ and t∗ respectively if an internal edge of T ∗ is (s∗, t∗) and s∗ = q∗ or t∗ = r∗

otherwise.

Theorem 3.4.11. The internal nodes of F are mPFCN of an mPFT G.

Proof. Suppose w∗ is not an mPFEN of F where w∗ is in G . Then the node w∗ is

common node of at least two arcs in F , which are mPFBs in G and by Theorem 3.4.8,

w∗ is an mPFCN. Next, if w∗ is an mPFEN of F , then w∗ is not an mPFCN, else

there would exist u1 and v1 distinct from w∗ s.t. w∗ lies on every u1v1 mPFP and one

such path lies in F . But w∗ is an mPFEN of F , which is not possible.

Corollary 3.4.1. An mPFCN of an mPFT is the common vertex of at least two

mPFBs.

Theorem 3.4.12. If G is an mPFT. If any α-strong mPFE is removed from G then

the strength of connectedness between its end vertices is reduced and the strength of

connectedness between some other pair of vertices is also reduced.

Proof. If G is an mPFT. An arc (s1, t1) of G is an α-strong mPFE then it is an mPFB

in G(by Theorem 3.4.9). Again by Theorem 3.3.3, removing any mPFB decreases the

strength of connectedness between its end vertices and also between some other pair

of vertices in G. Then we easily say that if we remove an α-strong mPFE from G that

means we delete an mPFB from G. So, if we remove any α-strong mPFE from G then

the strength of connectedness between its end vertices is reduced and the strength of

connectedness between some other pair of vertices is also reduced.

Theorem 3.4.13. A mPFCN of an mPFT is incident to at least two α-strong

mPFEs.
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Proof. If G be an mPFT. An arc (s1, t1) of G is an mPFB then it is a α-strong mPFE

in G(by Theorem 3.4.9). By Corollary 3.4.1, an mPFCN of an mPF tree is incident to

at least two mPFBs. So an mPFCN of an mPFT is incident to at least two α-strong

mPFE because an arc of G is an mPFB then it is a α-strong mPFE in G.

Theorem 3.4.14. Let G be an mPFT. An arc (s1, t1) in G is α-strong mPFE iff

(s1, t1) represents an edge of the spanning tree F of G.

Proof. Let (s1, t1) be an α-strong mPFE in G. Then ∀ i = 1, 2, 3, . . . ,m

pi ◦B(s1, t1) > pi ◦ CONNG−(s1,t1)(s1, t1) (3.9)

Suppose (s1, t1) does not belong to F . Then from the definition of an mPFT,

pi ◦ CONNF (s1, t1) > pi ◦B(s1, t1) (3.10)

Now from Proposition 3.2.1, ∀ i

pi ◦CONNF (s1, t1) ≤ pi ◦CONNG−(s1,t1)(s1, t1). (3.11)

From 3.10 and 3.11 we get pi ◦B(s1, t1) < pi ◦CONNG−(s1,t1)(s1, t1) which contradicts

to 3.9. Hence (s, t) is in F .

Conversely, let (s1, t1) be in F . Then (s1, t1) is an mPFB and arc (s1, t1) is the

unique strongest s1t1 mPFP. Then, ∀ i = 1, 2, 3, . . . ,m

pi ◦ CONNG−(s1,t1)(s1, t1) < pi ◦B(s1, t1)

which implies that (s1, t1) is α-strong mPFE.

Theorem 3.4.15. An mPFG G is an mPFT iff it has no β-strong mPFEs.

Proof. Let G be an mPFT and let F be its maximal spanning mPFT. Here all edges

in F are α-strong mPFE (by Theorem 3.4.9). Suppose (s1, t1) is a β-strong mPFE in

G. Then (s1, t1) is not in F and by concept of an mPFT, we have

pi ◦B(s1, t1) < CONNF (s1, t1). (3.12)
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Now from Proposition 3.2.1, ∀ i = 1, 2, 3, . . . ,m

pi ◦CONNF (x1, y1) ≤ pi ◦CONNG−(x1,y1)(x1, y1). (3.13)

From 3.12 and 3.13,

pi ◦B(x1, y1) < pi ◦ CONNG−(x1,y1)(x1, y1)

which says that (x1, y1) is a δ-strong mPFE, this is a contradiction. Thus, G contains

no β-strong mPFEs.

Conversely, we consider that G does not contain any β-strong mPF arcs. If G

has no mPFCs then G is an mPFT. Now assume that G has mPFCs. Let C1 be an

mPFC in G. Then C1 will only contain α-strong mPFEs and δ-strong mPFEs. Also,

all arcs of C1 cannot be α-strong mPFEs since otherwise it contradicts the concept of

α-strong mPFEs. So there exist at least one δ-strong mPFEs in C1. Then applying

the Theorem 3.3.1 then we get that G is an mPFT.

3.5 An application
A fuzzy graph theory is now a few days essential to solve a lot of network-based

problems, including networking of gas pipelines, social and road networks. At present

social networks are growing in human life very quickly. People can exchange informa-

tion very rapidly by the help of social networks and can be utilized for many purposes

like spreading of news, sharing of data, thoughts, profession interests etc. These net-

works can be described as a graph in which each user is seen as vertices, and the

relationship between two users consists of an edge.

1). We present here a 3PFG model which is used to detect the strong relationship

between two users. Fig. 3.6 shows a model of the social network which is rep-

resented by a 3PFG G = (V,A,B). Here each node represents one of the users

of Whatsapp, Facebook, Instagram from a set of 9 and interrelationship be-

tween these users expressed by joining edges between them. We consider 9 users

in this network denoted as V = {a, b, c, d, e, f, g, h, i}. The membership value of

each edge is characterized by three criteria :{how much time they stay connected

in Facebook per day, how much time they stay connected in Whatsapp per day,

how much time they stay connected in Instagram per day}. Since all the above



3.5. An application 49

characteristics of an edge between two users are uncertain in real life. We can

measure edge membership values, using the relation pi ◦ B(s, t) ≤ min{pi ◦

A(s), pi ◦ A(t)} for each (s, t) ∈ E, i = 1, 2, 3 where these values together repre-

sent the interconnections of the two users.

Here, the network contains 9 nodes and 15 arcs. From the graph below, it

can be seen that every user is connected by certain paths. So, we want to

check whether the relationship between them is α-strong, β-strong or δ-strong.

At first we consider the edge (a, b). Now we want to check whether this arc

is α-strong, β-strong or δ-strong. The strength of connectedness of (a, b) in

G − (a, b) is CONNG−(a,b)(a, b) = (0.3, 0.2, 0.1) and B(a, b) = (0.5, 0.4, 0.3). So

B(a, b) = (0.5, 0.4, 0.3) > (0.3, 0.2, 0.1) = CONNG−(a,b)(a, b) that means (a, b) is

α-strong mPFE. So, the relation between a and b strong but which is α-strong

type. In this way, we calculate whether these other arcs are α-strong, β-strong

or δ-strong.

From the Table 3.1, we see that the relation between h and i is α-strong when

they are connected to each other in social networks. This implies that h spends

more time with i. If the relation between two users is β-strong which means that

they spend an adequate time per day with each other. Similarly, if the relation

between two users is δ-strong which means they spend very less time with each

other. In this way we easily find out the relation between two users in a social

network.

2). Next We present here a 3PFG model which is used to detect the strongest path be-

tween two cities. The model of the road network, represented with the 3PF graph

G = (V,A,B), is shown in Fig. 3.7. In this respect, the nodes represent towns in

a country and the corresponding edges show the roads between two towns. We

consider 6 cities of a country denoted as V = {v1, v2, v3, v4, v5, v6}. The member-

ship value of each road is characterized by three criteria :{road hazards, traffic

jam on road, quality of the road}. We can measure edge membership values,

using the relation pi ◦ B(s, t) ≤ min{pi ◦ A(s), pi ◦ A(t)} for each (s, t) ∈ E,

i = 1, 2, 3 where these values together represent the interconnections of the two

cities.
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Edge Membership value Strength of connectedness Types of Strong arc

after deleting the edge

(a, b) (0.5, 0.4, 0.3) (0.3, 0.2, 0.1) α-strong

(a, h) (0.3, 0.2, 0.1) (0.5, 0.4, 0.3) δ-strong

(b, c) (1, 0.9, 0.8) (1, 0.9, 0.8) β-strong

(h, i) (1, 0.9, 0.8) (0.6, 0.5, 0.4) α-strong

(i, c) (1, 0.9, 0.8) (1, 0.9, 0.8) β-strong

(h, b) (0.6, 0.5, 0.4) (1, 0.9, 0.8) δ-strong

(b, d) (0.5, 0.4, 0.3) (0.3, 0.2, 0.1) α-strong

(c, d) (0.3, 0.2, 0.1) (0.5, 0.4, 0.3) δ-strong

(d, e) (0.3, 0.2, 0.1) (0.5, 0.4, 0.3) δ-strong

(f, e) (0.5, 0.4, 0.3) (0.7, 0.6, 0.5) δ-strong

(i, f) (0.8, 0.7, 0.6) (0.5, 0.4, 0.3) α-strong

(i, e) (0.7, 0.6, 0.5) (0.5, 0.4, 0.3) α-strong

(g, h) (0.7, 0.6, 0.5) (0.5, 0.4, 0.3) α-strong

(g, f) (0.5, 0.4, 0.3) (0.7, 0.6, 0.5) δ-strong

(b, i) (1, 0.9, 0.8) (1, 0.9, 0.8) β-strong

Table 3.1: Strong arcs in G.
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Figure 3.6: A 3PF graph G of a social network

Assume, a flood affects the town v1. Then the disaster site needs different kinds

of necessary things such as food, medical care kits, dry towels, tents, etc. That

is why the strongest path between other cities and this disaster site will support

this disaster site. Here, v1 is a disaster site. The strongest path from v1to other

vertices is to find next. From Fig. 3.7, we see that:

• There are four paths between v1and v2. This four paths are P1 : v1 → v2,

P2 : v1 → v6 → v3 → v2, P3 : v1 → v6 → v5 → v2 and P4 : v1 →

v6 → v5 → v4 → v3 → v2. The strength of the paths P1, P2, P3 and P4

are (0.7, 0.6, 0.6), (0.6, 0.6, 0.6),(0.3,0.3,0.1) and (0.5, 0.6, 0.4) respectively.

Here CONNG(v1, v2) = (0.7, 0.6, 0.6) and P4 be the strongest path between

v1 and v2. So the city v2 send necessary things to v1 along path P4.

• The strongest path from v1 to v3 is P : v1 → v2 → v3.

• The strongest path from v1 to v4 is P : v1 → v6 → v5 → v4.

• The strongest path from v1 to v5 is P : v1 → v6 → v5.

• The strongest path from v1 to v6 is P : v1 → v6.
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Figure 3.7: A 3PF graph G of a road network.

Likewise, other strongest paths can be found. The strongest route between two

cities can easily be identified and using these strongest paths the other cities will

help the disaster site in a 3PFG of a road network.

3.6 Summary

Fuzzy graph theory is widely used in computer science research, along with control

theory , data collection, expert systems, database theory etc. In this chapter, at first

we defined mPFP, mPFC in an mPFG. The strength of a connectedness of mPFP

is introduced. Next, we defined the strongest and strong mPFP, mPFBs, mPFCNs,

mPFT and mPFFs in an mPFG. Next, we discussed mPFP, mPFC in an mPFG. Here

we defined strongest and strong mPFP, α-strong, β-strong, δ-strong and δ∗-strong

mPFE of mPFGs and their related result.


