
Chapter 2

Types of vertices in m-polar

graphs∗

2.1 Introduction
The notion of mPF set as a generalisation of BFS was launched by Chen et al. [38] in

2014. The theory behind this concept is that “multipolar information” (not only bipo-

lar knowledge that represents the two-valued logic) exists, since real world problems

are often received from multiple agents. For example, mankind ’s accurate telecom

security level is one point in [0, 1]n (n ≈ 7× 109) because different persons have been

monitored at different times. A mPF model is useful in multi-agent, multi-attribute

and multi-object network models that gives the system more precision, versatility and

comparability than the standard, fuzzy, and bipolar fuzzy models. Chen et al. [38]

first defined mPFGs. The fundamental target of this chapter is to present the idea

of superstrong and strong mPF vertex of mPFGs using the concept of strong mPFE,

strength of connectedness of path etc. Next we studied several properties on these

paths. At the end, there is also an application of a strong path problem.

2.2 Generalized m-polar fuzzy graphs
The following described mPFG by Chen et al. [38]:

An mPFG is defined as a pair G = (A,B) in which A : V → [0, 1]m and B : E →

[0, 1]m satisfying B(xy) ≤ min{A(x), A(y)} for each xy ∈ E.

∗A part of the work presented in this chapter is published in Journal of Multivalued Logic and Soft

Computing, 34, 263–282 (2020).
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18 Chapter 2. Types of vertices in m-polar graphs

In addition, B is an mPFS in E ⊆ V × V . By using the description, B is an mPFS

defined in Ṽ 2 satisfying B(xy) = 0 = (0, 0, . . . , 0) ∀ xy ∈ (Ṽ 2 − E). The definition

above is difficult for the complement of mPFGs to be calculated. The generalized

mPFGs are therefore described below.

We presume the following before defining generalized mPFGs:

For this set of V , describe a equivalence relation ∼ on V × V − {(s, s) : s ∈ V }

as follows: (s1, t1) ∼ (s2, t2) ⇔ either (s1, t1) = (s2, t2) or s1 = t2 and t1 = s2. The

quotient set is marked with Ṽ 2 and the equivalence class with the element (s, t) is

marked with st or ts.

In the chapter, G = (V,A,B) is an mPFG of a crisp graph G∗ = (V,E).

Definition 2.2.1. An mPFG (or generalized mPFG) of G∗ is a pair G = (V,A,B)

where A : V → [0, 1]m is an mPFS in V and B : Ṽ 2 → [0, 1]m is an mPFS in Ṽ 2

s.t pi ◦ B(st) ≤ min{pi ◦ A(s), pi ◦ A(t)} ∀ st ∈ Ṽ 2, i = 1, 2, . . . ,m and B(st) = 0 ∀

st ∈ (Ṽ 2 − E),
(
0 = (0, 0, . . . , 0) is the lowest element in [0, 1]m

)
.

Here, pi ◦ A(s) is the ith degree of membership of the vertex s and pi ◦ B(st) is the

ith degree of membership of the edge st. A is called the mPFVS of G and B as the

mPFES of G.

Example 2.2.1. Here, A 3PFG G of the crisp graph G′ = (V,E) is displayed in Fig.

2.1, where V = {s′1, s′2, s′3, s′4} and E = {s′1s′2, s′2s′3, s′3s′4, s′2s′4, s′1s′3}.
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Figure 2.1: A 3PFG G
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2.3 m-polar fuzzy path and connectedness

In this section, m-polar fuzzy path (mPFP) andm-polar fuzzy connectedness (mPFC)

is described on mPFGs. Again, strong and strongest mPFP on mPFGs are described.

Definition 2.3.1. An mPFP of an mPFG G is a sequence of separate nodes s′ =

t1, t2, . . . , tn = t′ s.t., pi ◦ B(tk, tk+1) > 0 ∀ k = 1, 2, . . . , n − 1 and for at least one

i and all the nodes are separate except t1 may be the identical to tn. Let P : s′ =

t0, t1, . . . , tn = t′ be an mPFP. If n ≥ 3 and t0 = tn, then the mPFP is called an

mPFC.

Definition 2.3.2. Let P : s′ = s1, s2, . . . , sn = t′ be an mPFP in an mPFG G. Then

the strength of the path P is defined as

S(P ) = ( min
1≤i<j≤n

(p1 ◦B(si, sj)), min
1≤i<j≤n

(p2 ◦B(si, sj)), . . . , min
1≤i<j≤n

(pn ◦B(si, sj)))

= (Bn
1 (s′, t′), Bn

2 (s′, t′), . . . , Bn
m(s′, t′)).

The strength of connectedness between s′ and t′ is the maximum of the strengths of all

mPFPs between those vertices and which is formulated below:

CONNG(s′, t′) =
((
p1 ◦B(si, sj)

)∞
,
(
p2 ◦B(si, sj)

)∞
, . . . ,

(
pn ◦B(si, sj)

)∞)
,

where
(
pi ◦B(s′, t′)

)∞
= max

n∈N
(Bn

i (s′, t′))
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Figure 2.2: A 3PFG G.
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Example 2.3.1. A 3PFG G of G′ = (V,E) is seen in Fig. 2.2, where V = {q′, r′, s′, t′}

and E = {q′r′, r′s′, r′t′, s′t′, q′s′}. We find out the strength of connectedness between q′

and t′. The paths from q′ and t′ are q′ − s′ − r′ − t′, q′ − r′ − s′ − t′, q′ − s′ − t′ and

q′ − r′ − t′. The strength of the paths q′ − r′ − t′, q′ − s′ − t′, q′ − r′ − s′ − t′ and q′ −

s′− r′− t′ are (0.5, 0.2, 0.2), (0.6, 0.3, 0.2), (0.7, 0.3, 0.2) and (0.5, 0.2, 0.2) respectively.

So, CONNG(q′, t′) = (0.7, 0.3, 0.2) is the strength of connectedness between q′ and t′.

Definition 2.3.3. Let G be an mPFG. When there is an edge between each vertex

pair, G is called a mPF connected graph. In other words, an mPFG will be an mPF

connected graph if there is one at least i,
(
pi ◦B(s′, t′)

)∞
> 0 .

Definition 2.3.4. Let P : s′ = s1, s2, . . . , sn = t′ be an mPFP in an mPFG G.

Then, it is said that the path P is the strongest mPFP if Bn
i (s′, t′) = (pi ◦ B(s′, t′))∞

∀ i = 1, 2, 3, . . . ,m i.e. S(P ) = CONNG(s′, t′).

Definition 2.3.5. Let (s′, t′) be an arc in mPFG G. Then, it is said that the arc (s′, t′)

is a strong m-polar fuzzy edge (strong mPFE) if pi◦B(s′, t′) ≥ pi◦CONNG−(s′,t′)(s
′, t′)

∀ i = 1, 2, 3, . . . ,m i.e. if B(s′, t′) ≥ CONNG−(s′,t′)(s
′, t′). If ∀ i, pi ◦B(s′, t′) > 0 then

we said that s′ and t′ are strong mPF neighbors.

Definition 2.3.6. Let P : s = s1, s2, . . . , sn = t is a path from s to t. Then, it is said

that the path P is strong mPFP if (sj, sj+1) is strong mPFE ∀ 1 ≤ j ≤ n− 1.
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Figure 2.3: Illustration of example 2.3.2.
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Example 2.3.2. The Fig. 2.3 shows a 3PFG G of G′ = (V,E), where V = {q′, r′, s′, t′, u′}

and E = {q′r′, r′s′, r′t′, s′t′, t′u′, q′u′}. We consider all the paths from q′ to t′ for find-

ing CONNG(q′, t′). They are q′ − r′ − t′, q′ − u′ − t′ and q′ − r′ − s′ − t′ and the

strength of those paths are (0.5, 0.6, 0.6), (0.4, 0.2, 0.2) and (0.5, 0.5, 0.6) respectively.

So, CONNG(q′, t′) = (0.5, 0.6, 0.6) is the strength of connectedness between q′ and t′.

Again, q′− r′− t′ path strength is (0.5, 0.6, 0.6) and it is equal to CONNG(q′, t′). The

q′ − r′ − t′ path therefore represents the strongest path.

Definition 2.3.7. A vertex of an mPFG is known as an mPF pendant vertex if its

degree is one.

2.4 Strong and superstrong m polar fuzzy vertices

of mPF graphs

In this section, strong m-polar fuzzy vertices (strong mPFV) and superstrong m-

polar fuzzy vertices (superstrong mPFV) is described on mPFGs.

Definition 2.4.1. Let G be an mPFG and a∗ be an vertex in G. Then it is also said

that a∗ is the strong mPFV if (a∗, b∗) is strong mPFE for all vertices b∗ incident with

a∗ in G.
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Figure 2.4: Strong mPFV in G.
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Example 2.4.1. A 3PFG G of a crisp graph G′, where V = {q, r, s, t, u, v, w} and

E = {qr, rs, st, tu, qu, rw, wv, uv, ru} is shown in Fig. 2.4. Here qr,rs, ru and rw are

strong edges because (0.3, 0.5, 0.6) = B(q, r) > CONNG−(q,r)(q, r) = (0.2, 0.4, 0.5),

(0.6, 0.8, 0.9) = B(r, s) = CONNG−(r,s)(r, s) = (0.6, 0.8, 0.9), (0.6, 0.8, 0.9) = B(r, u) =

CONNG−(r,u)(r, u) = (0.6, 0.8, 0.9) and (0.6, 0.8, 0.9) = B(r, w) = CONNG−(r,w)(r, w) =

(0.6, 0.8, 0.9). So all the edges incident with r are strong mPFEs. Here r is a strong

mPFV.

Definition 2.4.2. Let G be an mPFG and a∗ ∈ V be an vertex in G. a∗ is called

superstrong mPFV if ∀ i = 1, 2, 3, . . . ,m, pi◦CONNG(s∗, t∗) = ki for every t∗( 6= s∗) ∈

V and for some ki ∈ (0, 1].

Example 2.4.2. A 3PFG G of a crisp graph G′ , where V = {q, r, s, t, u} and E =

{qr, rs, st, qt, qu, ru} is shown in Fig. 2.5. Here t is a superstrong mPFV because

CONNG(t, q) = CONNG(t, r) = CONNG(t, s) = CONNG(t, u) = (0.3, 0.5, 0.7).

y y

yy

@
@
@
@
@
@y

q r

st

u

(0.3, 0.5, 0.7)

(0.4, 0.6, 0.8)

(0.2, 0.4, 0.6)

(0.3, 0.5, 0.7)

(0.3, 0.5, 0.7)

(.4, .6, .8)

Figure 2.5: Superstrong mPFV in G.

Theorem 2.4.1. Let G be a finite connected mPFG and a∗ is a superstrong mPFV

in G. Then for every b∗ ∈ V , CONNG(a∗, b∗) ≥ B(a∗, c∗) ∀ c∗ adjacent to a∗.

Proof. Let G be a finite and connected mPFG. Let s∗ is a superstrong mPFV in G

that means ∀ i, pi ◦ CONNG(s∗, t∗) = ki for every t∗(6= s∗) and for some ki ∈ (0., 1]

Then using the definition of superstrong mPFV we have, ∀ i = 1, 2, 3, . . . ,m

pi ◦ CONNG(s∗, t∗) = pi ◦ CONNG(s∗, u∗). (2.1)
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Again we know, ∀ i

pi ◦ CONNG(s∗, u∗) ≥ pi ◦B(s∗, u∗). (2.2)

Now from equation 2.1 and 2.2 we get, ∀ u∗ adjacent to s∗ and for every t∗ ∈ V

pi ◦ CONNG(s∗, t∗) ≥ pi ◦B(s∗, u∗), ∀ i.

So, if a∗ ∈ V is a superstrong mPFV then for every b∗ ∈ V , CONNG(s∗, t∗) ≥

B(s∗, u∗) ∀ u∗ adjacent to s∗.

Corollary 2.4.1. Suppose s∗ is a superstrong mPFV in an mPFG G, then

CONNG(s∗, t∗) = S(P ) for at least one path P from s∗ to t∗.

Theorem 2.4.2. Let G be a connected mPFG. If every edge incident at s∗ has the

same membership value, then s∗ is a strong mPFV in G.

Proof. Suppose the membership value of each edge incident at a∗ has same i.e. ∀

i = 1, 2, . . . ,m, pi ◦ B(s∗, t∗) = αi for every t∗ adjacent to s∗. Now we want to prove

that s∗ is a strong mPFV, which means we have to show that every edge incident at

s∗ is strong mPFE.

Case 1: If s∗− t∗ is only one mPFP from s∗ to t∗, which is a trivial case. So clearly

we see that the arc (s∗, t∗) is strong mPFE. Hence s∗ is a strong mPFV.

Case 2: Suppose there exist more than one mPFP between s∗ and t∗. Then

the strength of all paths between s∗ and t∗ is less then or equal to (α1, α2, . . . , αm)

because every edge incident at s∗ has the same membership value (α1, α2, . . . , αm),

which implies the strength of connectedness between s∗ and t∗ is less then or equal

to (α1, α2, . . . , αm). So we have, pi ◦ B(s∗, t∗) ≥ pi ◦ CONNG−(s∗,t∗)(s
∗, t∗) ∀ i. This

implies that (s∗, t∗) is a strong mPFE for every s∗ adjacent to t∗. Hence s∗ is a strong

mPFV.

Theorem 2.4.3. Let G be a connected mPFG. Every edge incident with s∗ ∈ V has the

same membership value, which is minimum of all edges of G then s∗ is a superstrong

mPFV.
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Proof. Here s∗ ∈ V be a vertex in G. And every edge incident at s∗ has the same

membership value, say (α1, α2, . . . , αm). That means we say that ∀ i, pi ◦B(x, s∗) = αi

∀ x adjacent to s∗. From the above Theorem we say that s∗ is a strong mPFV. Next

we want to prove that s∗ is a superstrong mPFV. Here (α1, α2, . . . , αm) is minimum

among all edges of G. Then the ith component of strength of all paths from the vertex

a∗ to x(6= s∗) ∈ V is αi ∀ x( 6= s∗) adjacent to s∗. Therefore, ∀ i

pi ◦ CONNG(s∗, x) = αi, for all x (6= s∗) adjacent to s∗. (2.3)

Let v∗ be non-adjacent vertex to s∗. Then the strength of all paths from the vertex

s∗ to v∗ is (α1, α2, . . . , αm) because any path from s∗ to v∗ contain the edge whose

membership value is (α1, α2, . . . , αm) because every edge incident with s∗ ∈ have the

same membership value (α1, α2, . . . , αm) and these value is minimum among all edges

in G.

Therefore, ∀ i

pi ◦CONNG(s∗, v∗) = αi, for all v
∗ (6= s∗) non−adjacent to s∗. (2.4)

Then from equation 2.3 and 2.4 we get, s∗ is a superstrong mPFV of G.

Theorem 2.4.4. Let G be a connected mPFG. An edge (s∗, t∗) is strong mPFE iff ∀

i = 1, 2, . . . ,m, pi ◦ CONNG(s∗, t∗) = pi ◦B(s∗, t∗).

Proof. Let G be a connected mPFG and (s∗, t∗) be a strong mPFE. Then, ∀ i =

1, 2, . . . ,m,

pi ◦ CONNG−(s∗,t∗)(s
∗, t∗) ≤ pi ◦B(s∗, t∗).

Again,

CONNG(s∗, t∗) = max{S(P )}

= max{CONNG−(s∗,t∗)(s
∗, t∗), B(s∗, t∗)}

= B(s∗, t∗) (since CONNG−(s∗,t∗)(s
∗, t∗) ≤ B(s∗, t∗)).

Conversely, Suppose ∀ i = 1, 2, . . . ,m, pi ◦ CONNG(s∗, t∗) = pi ◦ B(s∗, t∗). It is

implies that ∀ i, pi ◦ CONNG−(s∗,t∗)(s
∗, t∗) ≤ pi ◦B(s∗, t∗). Hence the result.
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Theorem 2.4.5. Let G be a connected mPFG. Every edge incident with s∗ ∈ V have

the same membership value and these membership values are the minimum of all edges

of G if and only if s∗ is a strong and superstrong mPFV.

Proof. Suppose s∗ is a vertex in G. Membership value of each edge incident at s∗ is

the same. Now using the Theorem 2.4.2, we say that s∗ is a strong mPFV. Again

from Theorem 2.4.3, s∗ is a superstrong mPFV. Hence, s∗ is a strong and superstrong

mPFV.

Conversely, let s∗ be a strong and superstrong mPFV. Now, we show that each edge

with s∗ ∈ V has the same membership value. Every edge incident with s∗ is a strong

edge because s∗ is a strong mPFV. Then from Theorem 2.4.4 we get, if (s∗, t∗) is a

strong edge then pi◦CONNG(s∗, t∗) = pi◦B(s∗, t∗) ∀ i where t∗ is a adjacent vertex to

s∗. Again s∗ is also a superstrong mPFV, so pi◦CONNG(s∗, t∗) = ki ∀ i = 1, 2, . . . ,m.

We easily see that ∀ i = 1, 2, . . . ,m, ki = pi ◦ CONNG(s∗, t∗) = pi ◦ B(s∗, t∗) for all

t∗ adjacent vertex to s∗. Therefore every edge incident with s∗ ∈ V have the same

membership value.

Theorem 2.4.6. Let G be a connected mPFG. Every edge incident with s∗ has the

same membership value and this membership value is minimum among all edges of E

in G, then s∗ is a unique superstrong mPFV.

Proof. Here s∗ be a node in G and the membership value of every arcs incident at s∗

have the same say α = (α1, α2, . . . , αm). So we say that ∀ i, pi ◦B(t∗, s∗) = αi for all t∗

adjacent to s∗. Therefore from the Theorem 2.4.3, we have s∗ is a superstrong mPFV

of G which implies that pi ◦ CONNG(t∗, s∗) = αi ∀ i = 1, 2, . . . ,m and ∀ t∗( 6= s∗).

Now we have to prove the uniqueness of s∗. Let q∗ be another superstrong mPFV of

G. Then,

pi ◦ CONNG(s∗, q∗) = αi = pi ◦ CONNG(q∗, s∗) for all i

Now we consider a vertex r∗ ∈ V in which a∗ 6= q∗ 6= r∗ ∈ V , then

pi ◦ CONNG(q∗, s∗) = αi 6= pi ◦ CONNG(q∗, r∗) for all i
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Since α is minimum and α < B(q∗, r∗).

pi ◦ CONNG(q∗, s∗) 6= pi ◦ CONNG(q∗, r∗) for all i (2.5)

From equation 2.5 we get q∗ is not a superstrong mPFV, which is a contradiction.

Hence s∗ is a unique superstrong mPFV in G.

Theorem 2.4.7. Let G be a connected mPFG. Let s∗ be a pendant mPFV in V and

the edge (s∗, t∗) is only one edge incident with a∗ and the membership value of these

edge B(s∗, t∗) is minimum among all non incident edges with s∗, then s∗ is both strong

and superstrong mPFV in G.

Proof. Let G be a connected mPFG. Let s∗ ∈ V be a pendant mPFV. Suppose (s∗, t∗)

be the only edge incident with s∗ and the membership value of these edge B(s∗, t∗)

is minimum between all other edges (q∗, r∗) where (q∗, r∗) are non incident edge with

s∗. Here the edge (s∗, t∗) is strong mPFE because there exist only one path s∗ − t∗

between s∗ and t∗ and

pi ◦ CONNG(s∗, t∗) = pi ◦B(s∗, t∗) ∀ i (2.6)

Thus, the pendant mPFV s∗ is a strong mPFV. Next we want to prove that s∗ is a

superstrong mPFV. Suppose q∗ be a vertex in G. Now the strength of connectedness

between s∗ and q∗ is pi ◦ CONNG(s∗, q∗) = pi ◦ B(s∗, t∗) ∀ q∗ ∈ V , because the edge

(s∗, t∗) is only one edge incident with s∗ and the membership value of these edge

B(s∗, t∗) is minimum among all non incident edges with s∗. Hence

pi ◦ CONNG(s∗, q∗) = pi ◦B(s∗, t∗) ∀ i (2.7)

From 2.6 and 2.7, we get ∀ q∗ ∈ V

pi ◦ CONNG(s∗, t∗) = pi ◦ CONNG(s∗, q∗) ∀ i

This implies s∗ is a superstrong mPFV. Hence the result.

Theorem 2.4.8. Let G be a connected mPFG. Let a∗ be a strong mPFV. If the

membership value of each edge incident with s∗ has distinct, then s∗ is not superstrong

mPFV.
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Proof. Let s∗ be a strong mPFV. Then from the definition of strong mPFV we have

each edge incident with s∗ is strong mPFE. Now using Theorem 2.4.4 we have ∀

i = 1, 2, . . . ,m, pi◦CONNG(s∗, t∗) = pi◦B(s∗, t∗) where for all vertex t∗ adjacent with

s∗. Given that the membership values of each edge incident with s∗ is distinct. So if

q∗( 6= t∗) be another vertex adjacent to s∗ then ∀ i = 1, 2, . . . ,m, pi ◦CONNG(s∗, q∗) =

pi ◦ B(s∗, q∗). Thus we easily say that ∀ i = 1, 2, . . . ,m, pi ◦ B(s∗, t∗) 6= pi ◦ B(s∗, q∗)

because the membership value of each edge incident with s∗ has distinct. From the

definition of superstrong mPFV, clearly we have if s∗ is not a superstrong mPFV then

∀ i = 1, 2, . . . ,m, pi ◦ CONNG(s∗, t∗) 6= ki for some t∗( 6= s∗) and for some ki ∈ (0, 1].

Since each edge incident with a∗ are strong and membership value of these edges are

distinct then we have ∀ i = 1, 2, . . . ,m,

pi ◦ CONNG(s∗, t∗) = pi ◦B(s∗, t∗) 6= pi ◦B(s∗, q∗) = pi ◦ CONNG(s∗, q∗)

⇒ pi ◦ CONNG(s∗, t∗) 6= pi ◦ CONNG(s∗, q∗).

Thus s∗ is not a superstrong mPFV.

2.5 An application

A fuzzy graph theory is now a few days essential to solve a lot of network-based

problems, including networking of gas pipelines, social and road networks. Social

networks are currently rising quite rapidly in human life. In models of road networking,

a strong vertex problem is very important. People can exchange important goods very

rapidly with the help of road networks that can be utilized for many purposes. These

networks can be represented as a graph, where cities are considered as vertices and

the relation between two cities is represented by an edge.

We consider a collection of cities and focus on finding that city which is best suitable

to have a university or colleges. By suability we mean the city should be well connected

with all the other cities of the collection and should be feasible to all in respect to

communication, locality, ambiance etc. We model this problem through a 3PFG.

The idea is to find out strong and superstrong mPFV and finally concluding the

superstrong mPFV to be those cities most likely to have universities in them. And

the strong vertices(cities) are suitable to have colleges.

We present the 3PFG model to find the strong and superstrong cities(vertices). In



28 Chapter 2. Types of vertices in m-polar graphs

fig.2.6 each of the nodes represent a city and the arcs connecting the pair of ver-

tices (cities) have membership values, all of which are characterized by three criteria

:{Communication system, traffic, road condition }. Because all of the above features

of an edge between two citations in real life are uncertain. We can measure edge

membership values, using the relation pi ◦B(s, t) ≤ min{pi ◦ A(s), pi ◦ A(t)} for each

(s, t) ∈ E, i = 1, 2, 3 where these values together represent the interconnections of the

good two cities.
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Figure 2.6: A 3PFG G of a road network.

Here the network contains 10 vertices and 13 edges. We take 10 cities of a country

denoted as V = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10} which can be seen from fig. 2.6. Here

every city is related or connected to others through some paths. Here we want to check

which one of the city is strong or superstrong. At first we consider the vertex s2. All the

edges incident at s2 are (s1, s2), (s2, s9) and (s2, s3). Now we check that these edges are

strong or not. Here (0.2, 0.4, 0.6) = CONNG−(s1,s2)(s1, s2) = B(s1, s2) = (0.2, 0.4, 0.6),

(0.2, 0.4, 0.6) = CONNG−(s2,s3)(s2, s3) < B(s2, s3) = (0.3, 0.5, 0.7) and (0.2, 0.4, 0.6) =

CONNG−(s2,s9)(s2, s9) = B(s2, s9) = (0.2, 0.4, 0.6), which means (s1, s2), (s2, s9) and

(s2, s3) edges are strong edges. So, s2 is a strong vertex. In this way, we check whether
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these other nodes are strong vertices or not. In this graph, s2, s4 and s9 are strong

vertices and these vertices are suitable to have a college. Similarly now we find out

which city is superstrong. Here s5 is a superstrong vertex because CONNG(s5, si) =

(0.3, 0.5, 0.7) for all i = 1, 2, 3, 4, 6, 7, 8, 9, 10. So only s5 suitable to have a university.

According to our result we can conclude that s5(corresponding city) can have uni-

versity and s2, s4 and s9 can have colleges in them best on the condition taken.

2.6 Summary

Fuzzy graph theory is widely used in research fields of computer science together

with control theory, database theory and mining of data etc. In this chapter, we

defined superstrong and strong mPFV of mPFGs using the concept of strong mPF

arc, strength of connectedness of path etc. Next we discussed their related result.

We are extending our search work to defined the concepts of superstrong and strong

mPFVs along with distance and center of mPFGs on mPFG and its properties and

its applications on real life problems etc.
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