F 33.3

1

M.Sc. 1st Semester Examination, 2012 PHYSICS

(Quantum Mechanics)

PAPER-PHS-102(A+B)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

Use separate scripts for Gr.-A & B

GROUP - A

[Marks : 20]

Answer Q. No. 1 and any one from the rest

1. Answer any five questions:

 2×5

(a) A particle in the harmonic oscillator potential starts out in the state,

$$\psi(x) = A \left[3\psi_0(x) + 4\psi_1(x) \right]$$

Find A.

- (b) Find $|\psi(x, t)|^2$ in prob. (a).
- (c) Find $\langle x \rangle$ in prob. (a).
- (d) Find $\langle p \rangle$ in prob. (a).
- (e) Check that Ehrenfest's theorem holds for this wave function as described in prob. (a).
- (f) Is the ground state of the infinite square well an eigen function of momentum? If so, what is its momentum? If not, why not?
- (g) The Hamiltonian for a certain two-level system is

$$\hat{H} = \epsilon \left[\left| 1 > < 1 \right| - \left| 2 > < 2 \right| + \left| 1 > < 2 \right| + \left| 2 > < 1 \right| \right]$$

where $|1\rangle$, $|2\rangle$ is an orthonormal basis and \in is a number with the dimensions of energy. Find its eigen values.

(h) For hydrogen atom

$$\Psi_{100} = \frac{1}{\sqrt{\pi a_B^3}} e^{-r/a}$$

Find $\langle x^2 \rangle$.

2. (a) A particle of mass m is in the potential

$$V(x) = \infty \text{ for } x < 0$$

$$= -32 \hbar^2 / ma^2 \text{ for } 0 \le x \le a$$

$$= 0 \text{ for } x > a.$$

How many bound states are there? Answer with necessary deduction.

(b) If

$$[\hat{A}, \hat{B}] = i\hat{C}$$

then prove the generalized uncertainty principle, i.e.

$$\sigma_A^2 \sigma_B^2 \ge \frac{1}{A} < \hat{C} > \frac{1}{A}$$

5

5

3. (a) For harmonic oscillator, prove that

$$[\hat{a}, \hat{a}^+] = 1.$$

Where
$$a^+ = \frac{1}{\sqrt{2\hbar mw}} (-ip + mwx)$$

and its hermitian conjugate is a.

(b) If
$$V(r) = 0$$
 for $r < a$
= ∞ for $r > a$

Find the wave functions and the allower energies.

(c) Show that the commutator of two Hermitia operators is anti-Hermitian.

[Marks : 20]

Answer Q. No. 1 & 2 and any one from the rest

- 1. Answer any two bits:
 - (a) Find the packing fraction of Diamond structur

- (b) Show that face centered tetragonal lattice does not exist.
- (c) Draw the variation of B and M with H for a type-1 superconductor.

2. Answer any two bits:

3 x 2

- (a) Explain with neat diagram the symmetry elements screw and glide.
- (b) Find the structure factor in terms of fractional coordinate.
- (c) Show that the inclusion of anharmonic interaction is necessary to understand the phenomenon of thermal expansion.
- 3. Derive Laue equation assuming scattering of X-ray by a crystal. Prove the equivalence of Laue equation and Bragg Diffraction condition. 8+2
- 4. (a) Derive London's equation and explain how its solution explain Meissner's Effect.
 - (b) Prove that the monoatomic chain acts as a low pass mechanical filter. (4+3)+3