M.Sc.

2009

4th Semester Examination

PHYSICS

PAPER-PH-2204

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Solid State

(Marks: 40)

Answer Q. No. 1 and any three from the rest.

1. Answer any five bits:

5×2

- (a) Find an expression for coherence length in a superconductor.
- (b) Show that the superconductor Normal phase transition is first order in presence of a field and find its Latent heat.
- (c) Find the expression for maximum current density in a superconductor in terms of energy gap parameter.
- (d) Find the effective number of Bohr magneton for Mn²⁺ having 3d⁵ electronic configuration.
- (e) Explain the concept of Magnon.

- (f) What do you mean by ferrite. Outline its importance.
- (g) What is the physical origin of a domain.
- (h) Explain the difference between a perfect conductor and a superconductor. Show that the thermodynamic state of the superconductor depends on the parameters B & T, while that of a perfect conductor depends on the process.
- 2. (a) Derive the conditions under which electrophoruselectron interaction becomes attractive. 8
 - (b) Explain the formation of energy gap at the fermi energy in a superconductor. 2
- 3. (a) Drive an expression for current in DC. Josephson tunnelling. $2\frac{1}{2}$
 - (b) Explain the concept of flusoid and fluxion in a superconductor ring. $2\frac{1}{2}$
 - (c) Explain the variation of maximum current in QSQUID.
- 4. Find an expression for exchange energy assuming interaction of two normal hydrogen like atoms according to Heitler london scheme and hence explain the origin of ferromagnetism in a solid.
- 5. (a) Applying molecular field theory, find an expression for susceptibility in an antiferromagnetic solid. Find an expression for Neel temperature.
 - (b) Explain nuclear magnetic resonance & hence find usual resonance condition.
- 6. (a) Describe in details the quantum theory of paramagnetism.
 - (b) What is meant by quenching of orbital angular momentum.

APPLIED ELECTRONICS

Analog Electronics-2204A

(Marks: 20)

Attempt Q. No. 1 and any one from the rest.

- 1. Attempt any five from the following: 5×2
 - (a) Draw the timing details of a vertical blanking pulse with proper namings of different portions.
 - (b) Mention the nature of modulations of both audio and video (picture) signal in TV transmission.
 - (c) Differentiate between even field and odd field in case of TV transmission.
 - (d) Find the length of the dipole of an Yagi-Uda antenna used for receiving channel 5 (Band III).
 - (e) Explain the method of linear interlaced scanning used in a TV system.
 - (f) Find the frequencies of picture carrier and sound carrier for channel 4 (Band I).
 - (g) Write two advantages of a digital voltmeter over analog voltmeters?
 - (h) Draw the voltage-current characteristic curve of a SCR at different gate currents.

- 2. (a) Describe the construction details and operation of monochrome TV picture tube. 5
 - (b) What do you mean by vestigial side band transmission? Show the details frequency distribution of a channel used in CCIR-B system of TV transmission and mark the location of picture and sound carrier frequencies. Does it need any correction somewhere in the television link? If so how it is made?
- 3. (a) Draw the cross sectional diagram of a Triac and its I-V characteristics with proper labelling of different voltages and currents. Explain how it can be used to control the intensity of a bulb in A.C. circuit with proper diagrams.
 1+2+3
 - (b) Draw the block diagram of a digital voltmeter (DVM) and hence discuss the principle of operation of the digital voltmeter.

Digital Electronics—2204B

(Marks: 20)

Attempt Q. No. 1 and any one from the rest.

1. Answer any five questions:

5×2

(i) What is aliasing effect and how to overcome it?

(ii) What is the output of B register after the following program:

MVI C AO H

MOV A, C

ANI O1 H

MOV B. A

HLT

- (iii) What are the different register in 8086 μ p?
- (iv) Explain with proper example:
 - (a) Single byte instruction;
 - (b) Multi-byte instruction.
 - (v) What are the merits and demerits of "Flat top sampling"?
- (vi) Using block diagram show how to get PCM signal from an analog signal.
- (vii) Explain the quantization of an analog signal m(t).
- (viii) State and explain sampling theorem.
- 2. (i) Write a program to subtract a 16 bit number stored at 2030(H) memory location from another 16-bit number stored at location 3030(H). Store the result at 4030 location.
 - (ii) Explain the conditional Jump statement.
 - (iii) Discuss how to attain 20 bit address bus in $8086 \mu p$. 5+2+3

- 3. (i) In a T1 digital system 24 signals are multiplexed and are sampled at 8000 frames/sec. Considering one synchronization bit calculate the bit rate. Assume every signal is of 8 bit-signal.
 - (ii) What do you mean by Differential Pulse Code Modulation?
 - (iii) "If the sampling pulse train has some finite width then the output signal is distorted." True or False? Justify.
 - (iv) Why "Guard-band" is preferable in sampling theorem? 3+2+3+2