M.Sc.

2009

4th Semester Examination

PHYSICS

PAPER—PH-2203

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any five bits:

2×5

- (i) Find an expression of dearrier potential assuming a p-n junction under equilibrium condition.
- (ii) Assuming a p+n junction with a graded n region where the doping is described by $N_d(x) = Gx^m$. The depletion layer width W extends from the junction at x = 0 to the n region. Find an expression for the maximum electric field at the junction.

- (iii) What is negative differential mobility in Gads?
- (iv) Show with the help of band-diagram how ohmic contact is possible in a metal and n-type semiconductor junction.
- (v) In an n-type semiconductor the Fermi level lies 0.4 ev below the conduction band, If the concentration of donor atom is doubled, find the new position of Fermi level. Assuming $k_0T = 0.3$ eV.
- (vi) The minority carrier life-time in p-type material is 10^{-7} sec. The mobility of electron in Si is $0.15 \text{ m}^2\text{v}^{-1}\text{s}^{-1}$ at 300K. If 10^{20} electrons/m³ are injected at x=0, what is diffusion current density just at junction.
- (vii) A Si is doped with 10^{17} atoms/m³. Find the barrier potential for a symmetric junction at room temperature $m_e^* = 1.1m$; $m_n^* = 0.56m$.
- (viii) Silicon has relative permittivity 11 and band effective mess $0.1~\rm m_0$, where $\rm m_0$ is free electron mass. Calculate the ionization energy for donor impurity.
- (a) Find an expression for capacitance in a linearly graded junction.
 - (b) Deduce Einstein relation assuming a p-n junction under equilibrium condition.
- 3. (a) Find an expression for efficiency of a solar cell. 8
 - (b) What is meant by Shallow-trap and deep-trap.

Group-B

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Attempt any five bits:

5×2

- (a) What is the difference between Probe Microscopy (PM) and Electron Microscopy (EM)?
- (b) Match column A with column B properly:
 - (i) XPS

(i) Morphology

(ii) TEM

(ii) Crystal structure

(iii) STS

(iii) Density of state

(iv) LEED

- (iv) Binding energy
- (c) Why nanomaterials are much more reactive than their bulk counterpart?
- (d) What are the advantage and disadvantage of TEM over SEM?
- (e) What is the working principle of A.F.M.?
- (f) Find an expression of barrier potential assuming a p-n junction under equilibrium condition.
- (g) State the different steps to attain UHV from normal atmosphere.
- (h) What is the basic difference between physical and chemical vapour deposition?

- 2. (a) How can you etch the surface of the sample (thin film) within and without the vacuum chamber?
 - (b) Describe the uses of X-ray photo electron spectroscopy (XPS, ESCA) and mention the limitations.
 - (c) What is DTA? Mention the properties of the material can be studied by using DTA. 2+5+3
- 3. (a) Name two methods to prepare thin film sample.
 - (b) Name two compound semiconductor which are optically active.
 - (c) What are the different allotropy of carbon?
 - (d) Write a short note on any one of the followings:
 - (i) Quantum Dot;
 - (ii) Sol-Gel Method;
 - (iii) UV-VIS Spectrophotometer.
 - (e) Discuss different techniques of materials preparation.

1+1+1+4+3