M.Sc.

2009

4th Semester Examination

PHYSICS

PAPER-PH-2201

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any five bits:

2×5

- (a) Show that if a wave function is an eigenstate of a symmetric Hamiltonian, corresponding to a non-degenerate eigenvalue, then it is either symmetric or antisymmetric.
- (b) For a two electron atom express the form of coulomb energy and exchange energy. Give the energy of the singlet and triplet state to first order in there energies.

- (c) Define differential scattering cross-section and show that it is equal to the absolute square of scattering amplitude.
- (d) Two non-interacting electrons are confined to an infinite potential well

$$v(x) = \begin{cases} 0 & 0 < x < a \\ \infty & 0 > x > a \end{cases}$$

find the energy and wave function in the first excited state.

- (e) Find the expression for phase shift 'δ' of the scattered particle from a central potential v(r) using Born approximation. Show that the particles gain phase when the scattering potential is attractive and loose in phase for repulsive potential.
- (f) Show with a diagram the splitting of energy levels of $2p_{3/2}$, $2p_{1/2}$ and $2s_{1/2}$ levels due to application of a weak magnetic field.
- (g) Give the zeroth order wave function for Helium atom
 (i) in the ground state 1s² and (ii) in the excited state 1s2s.
- (h) A system consists of three identical indistinguishable particles. Construct symmetric and antisymmetric wave functions from unsymmetrised wave functions.

- 2. (i) In an excited state of alkali atom doublet structure show that $2p_{3/2}$ state has higher energy than $2p_{1/2}$ state.
 - (ii) Draw the energy level diagram for the $2p_{3/2}$, $2p_{1/2}$ and $2s_{1/2}$ states and write the wave functions in terms of the spherical harmonics $Y_{lm}(\theta, \phi)$ and the spin states $|\uparrow\rangle$ or $|\downarrow\rangle$. Show all the possible electric dipole allowed transitions.
 - (iii) Find the square of the dipole matrix elements for ex, ey and ez between the states

$$|2p_{3/2} m = 3/2\rangle$$
 to $\langle 2s_{1/2} m = 1/2|$.

Given
$$Y_{11} = -\sqrt{\frac{3}{8\pi}} \sin \theta^i e^{\phi}$$

$$Y_{00} = \frac{1}{\sqrt{4\pi}}$$

Also comment on the intensities of the lines $2p_{3/2} - 2s_{1/2}$ and $2p_{1/2} - 2s_{1/2}$. 2+4+4

3. (a) Starting from the general solution of the Schrodinger equation for a free particle:

$$\psi(\mathbf{r},\theta,\phi) = \sum_{l=0}^{\infty} \left[\mathbf{A}_{l} \, \mathbf{j}_{l} (\mathbf{K} \mathbf{r}) + \mathbf{B}_{l} n_{l} (\mathbf{K} \mathbf{r}) \right] \mathbf{Y}_{lm} \! \left(\theta, \phi \right) \label{eq:psi_loss}$$

Show that the plane wave eikz representing free particle beam moving along z-axis can be expressed as

$$e^{ikz} = \sum_{l=0}^{\infty} i^{l} (2l+1) j_{l}(Kr) P_{l}(\cos \theta)$$

(b) Consider scattering of a particle beam moving along z axis by a spherically symmetric potential centred at origin.

Assuming asymptotic solution show that scattering amplitude is given by

$$f(\theta) = \frac{1}{K} \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l} P_l(\cos \theta) \sin \delta_l.$$

(The symbols have their usual meaning.)

5+5

Group-B

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any five from the following:

2×5

(a) Write down the expression for free energy of F.D. gas under magnetic quantization.

- (b) Define 2nd order phase transition in terms of order parameter.
- (c) Write down an expression for Isothermal susceptibility according to G-L theory of phase transition.
- (d) Explain phase transition in the light of Lee and Yang's Theory.
- (e) How Bragg William approximation predicts MFA?
- (f) In what limit do the B-E and F-D gas behave as classical gases and why?
- (g) Draw graphically P vs. T plot for chemical, B-E and F-D gases.
- (h) Distinguish between He-I and He-II in the light of two fluid model.
- 2. (a) Show that for a two-dimensional ideal B-E gas, number of particles

$$N = \frac{A2\pi m k_B T}{h^2} B_1(\alpha),$$

where $\alpha = -\mu\beta$; $\beta = \frac{1}{k_BT}$; A is the area. Other symbols

have usual meanings. Can it undergo B-E condensation?

(b) Prove that in a photoelectric effect, current density

$$j = \frac{2\pi ame}{h} (v - v_0)^2,$$

where a = probability of absorption of photon in a metal; ν_0 = threshold frequency.

(Assume $(h\nu - h\nu_0) >> k_BT$.) Other notations bear their usual meanings.

- 3. (a) Find out the behaviour of the specific heat of fermions at very low temperatures using qualitative arguments.

 Compare the behaviour of specific heat as a function of temperature for a Bose gas and a Fermi gas by a schematic picture.

 2+2
 - (b) Find out the expression of the free energy of noninteracting electrons in a magnetic field. In what respect is the behaviour of this system different from a paramagnetic material and why? 4+2