2011

M.A.

4th Semester Examination PHILOSOPHY

PAPER-PHI-2206

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

[Advanced Logic]

Answer any two questions from Group—A and one question from Group—B

Group-A

- (a) Which of the following statements are true (for all sets A, B, and C)?
 - (i) If $A \in B$ and $B \subseteq C$ then $A \subseteq C$.
 - (ii) $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
 - (iii) A & B and B & C then A & C.

2×3

- (b) (i) Define empty set.
 - (ii) Show that the empty set is a subset of every set.

(c) What is wrong with the following argument? Tomcats are cats. Cats are species. Therefore, tomcats are a species. **2.** (a) (i) Give an example of sets A,B,C,D satisfying the conditions : $A \subset B$ $B \in C$ $C \subset D$ D = E(ii) Find the set of all subsets of the set [1, 2] (b) Letting: $A = \{1\}, C = \{1, 2\}, E = \{1, \{1, \{1\}\}\}\}$ $B = \{1, \{1\}\}, D = \{1, 2, \{1\}\}$ (i) Which of the following statements are true? $B \sim A \in D$ $E \sim B \subset A$ 1+1 (ii) Find the following: $\{A\} \cap B$ $({A} \cup D) \cap (E \sim C)$ 1+1

(c) (i) What is domain of individuals? Explain with examples.

(ii) Express the following notions in set theoretic notation:

The complement of A relative to B. the complement of set A relative to a domain of individuals.

(d) (i) If A is any set, what are the following?

A ~ A

Λ~A 1+1

(ii) Draw a Venn diagram representing that.

 $A \cup B \neq \Lambda$ and $A \cup \sim C \neq \Lambda$

1+1

- 3. (a) Translate the following statements in terms of set theoretic symbols. (any four): 2×4
 - (i) The apostles are twelve.
 - (ii) Fools and drunk men are truth tellers.
 - (iii) All coffee drinkers drink either tea or coffee.
 - (iv) A philosopher drinks neither tea nor coffee.
 - (v) No philosopher is a politician.
 - (vi) Women are human beings.
 - (b) Use Venn diagram to test whether the following assumptions are mutually consistent:

 $C \neq \Lambda$

 $A \cap B \neq \Lambda$

 $A \cap C = \Lambda$

 $(A \cap B) \sim C = \Lambda$

4

(c) Use Venn diagram to test the validity of the following argument. State in terms of regions of the diagram whether the argument is valid or invalid:

All witnesses are prejudiced.

Some liars are not prejudiced.

: Some liars are not witnesses.

4

- 4. (a) Explain with example the notion of Cartesian product.
 - (b) What are the domain, counter domain and field of the relation of being a father?
 - (c) Classify the following relations according to the properties they do or do not have (e.g. reflexive, symmetric, not antisymmetric, not transitive etc.)
 - (i) The relation of being a grand father in the set of all persons.
 - (ii) The relation of being the same height in the set of all persons.
 - (iii) The relation of being a mother in the set of all persons.
 - (iv) The relation of loving in the set of all persons.

2×4

5. (a) Letting:

A = The set of all positive integers. $C = \{2, 4\}$

$$B = \{3, 5\}, D = \{1, 2\}$$

Find the following:

A ~ D

 $(B \cup C) \cap (B \cup D)$

 $A \sim (C \cap D)$

 $(A \sim C) \cup (A \sim D)$

1×4

(b) Explain the following facts about the empty set:

(i) $(\exists A) (\Lambda \in A) & (\exists A) (\Lambda \notin A)$

(ii) (A)
$$(A \subseteq \Lambda \leftrightarrow A = \Lambda)$$

2+2

6. Let, $A_1 = \{1, 2\}$

$$A_2 = \{ \Lambda \}$$

$$R = \{(1, 2), (2, \Lambda)\}$$

- (a) Is R a subset of the Cartesian product $A_1 \times A_2$?
- (b) Is D(R) a subset of A_1 ?
- (c) Is C(R) a subset of A_2 ?
- (d) Is F(R) a subset of $A_1 \cup A_2$?

 2×4

- 7. (a) State the precise circumstances under which a relation is both symmetric and a symmetric in set A.
 - (b) Let $A = \{1, 2, \{1\}\}$
 - (i) Give an example of binary relation which is reflexive, symmetric but not transitive in A.
 - (ii) Give an example of binary relation which is reflexive, but neither symmetric nor transitive in A.

2+2