2009

M.A.

1st Semester Examination PHILOSOPHY

PAPER - PHI-1103

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Western Logic)

Answer any two questions from Group—A and one question from Group—B.

Group-A

- Symbolize each of the following proposition. In each case use the suggested notations (any eight)

 2×8
 - (i) If any officer is present, then either no majors are present or he is a major.

(Ox: x is an officer. Px: x is present. Mx is a major.)

(ii) If there are any survivors and only women are survivors, then they are women.

(Sx: x is a surviver. Wx: x is a woman.)

(iii) If something is missing, then if nobody calls the police, some one will be blamed.

(Mx: x is missing. Px: x is a person. Cx: x is calls the police. Bx: x will be blamed.)

(iv) Dead men tell no tales.

(Dx: x is dead. Mx: x is man. Txy: x tells y)

(v) Any good amateur can beat some professional.

(Gx: x is a good amateur. Px: x is a professional. Bxy: x can beat y)

(vi) If every position has a future and no employees are lazy, then some employees will be successful.

(Px: x is a position. Fx: x has a future. Ex: x is an employee. Lx: x is lazy. Sx: x will be successful.)

(vii) If any husband is unsuccessful, then if some wives are ambitious he will be unhappy.

(Hx: x is a husband. Sx: x is successful. Wx: x is a wife. Ax: x is ambitious. Ux: x will be unhappy.)

(viii) If something is wrong, then it should be rectified.

(Wx: x is wrong. Rx: x should be rectified.)

(ix) Plato and Aristotle are greeks and philosophers.

(Gx: x is greek. Px: x is philosopher.)

- (x) Sita is a graceful dancer.
- 2. Construct a formal proof of validity for any four of the following. 4×4
 - (i) Any car with good brakes is safe to drive and safe to ride in. So, if a car is new, then if all new cars have good brakes, it is safe to drive.

(Cx: x is a car. Bx: x has good brakes. Dx: x is safe to drive. Rx: x is safe to ride in. Nx: x is new.)

(ii) $(\exists x)$ $Ux \supset (y)[(Uy \ v \ Vy) \supset Wy]$

 $(\exists x) Ux \cdot (\exists x) Wx /$

∴ (3x) (Ux·Wx)

(iii) $(x)\{Lx \supset [(y) (Py \supset Vy) \supset Mx]\}$

 $(\exists x) (Px \cdot Vx) \supset (y) (Py \supset Vy)/$

 \therefore (3x) Lx \supset ((3y) (Py · Vy) \supset (3z)Mz]

(iv) (3x) Jx v (3y) Ky

(x) $(Jx \supset Kx) /$

∴ (∃y)Ky

(v) $(\exists x) Xx \supset (y) (Yy \supset 2y)/$

 \therefore ($\exists x$) ($Xx \cdot Yx$) \supset ($\exists y$)($Xy \cdot Zy$)

3. Prove the invalidity of any four of the following arguments.

(i) (x) $(\exists y)$ $(Hx \supset Iy)$

 $(\exists y) (z) (Iy \supset Jz) / \therefore (x) Hz \supset (z) Jz$

(ii) (x) $Qx \supset [(\exists y) Ry \cdot (\exists y) Sy]$

($\exists y$) ($Ry \cdot Sy$) \supset (z) Tz /

 $x \in (x) \subset x \subseteq (x) \cdots$

(iii) (x) (y) (Bx \supset Cy)

(x) $Cx \supset [(\exists y)(Dy \cdot Ey) \cdot (\exists z)(Dz \cdot \sim Ez)]/$

 \therefore (x) (Bx \supset Dx)

(iv) (x) (y) $[Ax \supset (By \ v \ Cy)]$

(z) {[(y) By v (y) Cy] \supset Dz}/

 \therefore ($\exists x$) ($\exists y$) ($Ax \supset Dz$)

(v) (x) $(\exists y)$ (Hx \equiv Gy) /

 \therefore (\exists y) (x) (\exists x) \exists y)

4. Construct demonstrations for any four of the following.

4×4

(i) (x) (Q \supset Fx) \equiv [Q \supset (x) Fx]

(ii) $(x) (Fx \lor Q) \equiv [(x) Fx \lor Q]$

(iii) $(\exists y) [(\exists x) Fx \supset Fy]$

(iv) $[(\exists x) Fx \supset (\exists y) Gy] \equiv (x) (\exists y) (Fx \supset Gy)$

(v) $(\exists x) (Fx \supset Q) \equiv [(x) Fx \supset Q]$

4×4

Group-B

Answer any one of the questions.

- 5. Identify and explain the mistakes in the following erroneous "proofs". 4×2
 - (a) 1. (y) $(\exists x)$ $(Fx \vee Gy) / \therefore (\exists x)$ (y) $(Fx \vee Gy)$.
 - 2. $(\exists x) (Fx \vee Gy) l \cdot Ul$.
 - \rightarrow 3. Fx v Gx.
 - 4. (y) $(Fx \vee Gy) 3 \cdot UG$.
 - 5. $(\exists x) (y) (Fx v Gy) 4 \cdot EG$.
 - 6. $(\exists x)$ (y) $(Fx \vee Gy) 2$, 3-5 EI.
 - (b) 1. (3x) Fx
 - 2. $(\exists x) Gx / : (\exists x) (Fx \cdot Gx)$
 - \rightarrow 3. Fy
 - → 4. Gy
 - 5. Fx · Gy 3, 4, conj
 - 6. $(\exists x) (Fx \cdot Gx) 5$, EG.
 - 7. $(\exists x) (Fx \cdot Gx) 2, 4 6 \cdot EI$.
 - 8. $(\exists x) (Fx \cdot Gx) 1, 3 7 \cdot EI$.
- 6. Explain with illustrations the rule of Universal Generalization according to copi.

7. Explain after copi the following notions (any four):

4×2

- (i) Multiply General propositions and singly General propositions;
- (ii) Individual variable and individual constant;
- (iii) Propositions and propositional functions;
- (iv) Revised and more general definition of formal proof of validity;
- (v) Bound variable and free variable.