
Chapter 5

Passive Target Tracking System
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5.1 Model-5: Prioritization of Receivers for Mini-

mum Possible Error Boundary in Time Differ-

ence of Arrival Algorithm

Overview

A lot of passive target tracking techniques are available to find out the unknown

target location. In this literature, Time difference of arrival (TDOA), a widely

used passive target tracking technique, is used to derive the position of the tar-

get. By applying cross-correlation techniques on signals received by two different

receivers one hyperbolic equation can be formed. With the help of a minimum

four receiving stations, a unique intersecting point can be derived from hyperbolic

equations which give the position of a target precisely. The accuracy of the tar-

get position depends upon the geometric location of the receivers with respect to

the target location. A simulation study was carried out with seven numbers of re-

ceivers. We considered all thirty-five combinations taking four receivers at a time

out of seven. From this simulation study, a unique relation between target po-

sition measurement errors with the average range difference error is established.

With the help of the above relation, receivers can be prioritized and four receivers

could be placed in best geographical locations. By considering four high prior-

itized receivers minimum target position measurement error could be achieved.

An attempt was focused to draw the error boundary, error factor of target position

measurement with the range of the target. And it is clear that the error factor is

varying linearly with the range of the target.
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5.1.1 Introduction

A never-ending demand for finding the location and improving the measurement

accuracy of target location either static or dynamic has been a most discussed

topic among scientists as well as some technology-oriented organization. This

helps largely in military prospects where the opponent’s incoming target is es-

timated within milliseconds. Apart from this, it helps in emergency evacuation

situations, navigation purposes, tracking a person, various search operations, etc.

The aviation sector has also significantly modernized with the help of positional

location technology.

For measurement of target location, there exists several passive target lo-

calization techniques like Time on arrival (TOA), Angle of Arrival (AOA), Time

Difference of Arrival (TDOA), Received Signal Strength (RSS), etc. and also

some hybrid techniques which are a combination of two different localization al-

gorithm mentioned above. AOA measures the angle of the source with respect

to sensors. The power present in a received signal varies from a shorter distance

to longer. RSS technique computes the position parameters by this energy level

of the received signal. In TOA techniques the travel time of signal converted in

distance to get positional parameters. Each method has its own advantages and

disadvantages according to the application.

For an exact positional value, the TOA method requires strict clock synchro-

nization between source and receiver station. To avoid such a synchronization

problem and to improve the accuracy of a target, TDOA techniques are used. It

is a cross-correlation technique and is also known as hyperbolic position location

techniques.
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Figure 5.1: A sample Hyperbolic Position Location Solution (Three receivers)

5.1.2 TDOA Algorithm for Position Measurement

In this section, we have solved the localization problem using time difference

of arrival (TDOA) methods. There are four receivers present which give us a

hyperbolic equation. By solving these hyperbolic equations lead us to get the

positional value. But it is very complex to solve those equations and hence the

error analysis becomes a difficult task. This is due to the non-linearity of the

hyperbolic equation.

At first range difference between two receivers is calculated by the difference

in time of arrival of the signal. The time of arrival (TOA) of two geo-spatial

receivers was taken into consideration. The range can be calculated from the

product of TDOA and the propagation speed. The propagation speed is equivalent

to the speed of the light. This range difference yields to the hyperbolic equation

between two receiver stations. In range difference measurement if the unknown

quantity to be determined is equal to the number of the equation then there exists

a unique solution. If there exist multiple intersections between two hyperbolas,
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then ambiguity exists in estimated position value.

Basically solving these hyperbolic equations is a challenge. The Taylor se-

ries expansion is used to linearize the equation. It is an iterative method. It can

give an exact solution unless the initial guess is not correct. A method proposed

by Fang [42] gave a correct derivation to the linearization problem where the num-

ber of unknown variables is equal to the number of the hyperbolic equation. But

this method suffers because of inborn squaring operation. In terms of complexity

computation, it is less intensive than the Taylor series expansion. Chan and Ho

[29] proposed execution method by solving repetitive estimation. This method is

superior than the Taylor series and the Fang’s method.

If (x,y,z) is source transmitter location and (xi,yi,zi) is the location of the it h

receiver, Ri is a range of source transmitter from the it h receiver given by

Ri =
√
(xi− x)2 +(yi− y)2 +(zi− z)2 (5.1)

Then the range differences of four station Ri j,Rik,Rk j,Rkl are calculated and the

equation for the same represented below,

Ri j =Ri−R j =
√
(xi− x)2 +(yi− y)2 +(zi− z)2−

√
(x j− x)2 +(y j− y)2 +(z j− z)2

(5.2)

Rik =Ri−Rk =
√
(xi− x)2 +(yi− y)2 +(zi− z)2−

√
(xk− x)2 +(yk− y)2 +(zk− z)2

(5.3)
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Rk j =Rk−R j =
√

(xk− x)2 +(yk− y)2 +(zk− z)2−
√
(x j− x)2 +(y j− y)2 +(z j− z)2

(5.4)

Rkl =Rk−Rl =
√
(xk− x)2 +(yk− y)2 +(zk− z)2−

√
(xl− x)2 +(yl− y)2 +(zl− z)2

(5.5)

Now The time difference of arrival between it h receiver and jt h receiver can be

expressed as

ti j =
Ri−R j

c
(5.6)

Where Ri is greater than R j and c is the velocity of light.

Let xi(t)andx j(t) be signals received at it h receiver and jt h receiver respec-

tively. One way to calculate the time difference ti j of the signal received at it h and

jt h receiver is given by means of standard cross-correlation function.

Using nonlinear regression, this equation can be converted to the form a

hyperbola. Once enough hyperbolas have been calculated, the position of the

transmitter can be calculated by finding the intersection.

Let,(x0,y0,z0) is the source location. Then range from it h receiver to source

is ri. Then,

ri =
2
√
(x0− xi)2 +(y0− yi)2 +(z0− zi)2 (5.7)

We would require four equations to obtain a solution here, which can be obtained
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by expressions of ri, r j, rk, rl .

ri− r j = ri j (5.8)

ri− rk = rik (5.9)

rk− r j = rk j (5.10)

rk− rl = rkl (5.11)

Where,

ri j =
2
√
(x0− xi)2 +(y0− yi)2 +(z0− zi)2− 2

√
(x0− x j)2 +(y0− y j)2 +(z0− z j)2

(5.12)

rik =
2
√

(x0− xi)2 +(y0− yi)2 +(z0− zi)2− 2
√

(x0− xk)2 +(y0− yk)2 ++(z0− zk)2

(5.13)

rk j =
2
√
(x0− xk)2 +(y0− yk)2 +(z0− zk)2− 2

√
(x0− x j)2 +(y0− y j)2 +(z0− z j)2

(5.14)

rkl =
2
√
(x0− xk)2 +(y0− yk)2 +(z0− zk)2− 2

√
(x0− xl)2 +(y0− yl)2+(z0− zl)

2

(5.15)
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The four equations given above can be solved and rearranged to obtain two

plane equations as follows:

y = Ax0 +Bz0 +C (5.16)

y = Dx0 +Ez0 +F (5.17)

Where,

A =
Rikx ji−Ri jxki

Ri jyki−Riky ji
(5.18)

B =
Rikz ji−Ri jzki

Ri jyki−Riky ji
(5.19)

C =
Rik[R2

i j + x2
i − x2

j + y2
i − y2

j + z2
i − z2

j ]−Ri j[R2
ik + x2

i − x2
k + y2

i − y2
k + z2

i − z2
k ]

2[Ri jyki−Riky ji]
(5.20)

D =
Rklx jk−Rk jxlk

Rk jylk−Rkly jk
(5.21)

E =
Rklz jk−Rk jzlk

Rk jylk−Rkly jk
(5.22)
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F =
Rkl[R2

k j + x2
k− x2

j + y2
k− y2

j + z2
k− z2

j ]−Rk j[R2
kl + x2

k− x2
l + y2

k− y2
l + z2

k− z2
l ]

2[Rk jylk−Rkly jk]
(5.23)

Solving equation (5.16) and equation (5.17), gives a linear equation for x0 in

terms of z0,

Ax0 +Bz0 +C = Dx0 +Ez0 +F (5.24)

x0 = Gz0 +H (5.25)

Where,

G =
E−B
A−D

(5.26)

H =
F−C
A−D

(5.27)

Substituting equation (5.25) back into equation (5.16), gives a linear equa-

tion for y0 in terms of z0,

y0 = Iz0 + j (5.28)

Where,

I = AG+B (5.29)
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J = AH +C (5.30)

Equation (5.25) and equation (5.28), if substituted back into equation (5.13)

give

K = R2
ik + x2

i − x2
k + y2

i − y2
k + z2

i − z2
k +2xkiH +2ykiJ (5.31)

And,

L = 2[xkiG+ ykiI +2zki] (5.32)

M = 4R2
ik[G

2 + I2 +1]−L2 (5.33)

N = 8R2
ik[G(xi−H)+ I(yi− J)+ zi]+2LK (5.34)

O = 4R2
ik[(xi−H)2 +(yi− J)2 + z2

i ]−K2 (5.35)

Final solution:

z0 =
N

2M
+

2

√
(

N
2M

)2− O
M

(5.36)
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y0 = Iz0 + J (5.37)

x0 = Gz0 +H (5.38)

Finally after solving, the position of the target(x0,y0,z0) is obtained.

5.1.3 Result and Analysis

A python script was written to test on sample data because it is a high-level lan-

guage and analysis of data is smoother and easier as compared to other program-

ming languages. Source position is considered as (x,y,z).

The range differences Ri j, Rik, Rk j and Rkl were calculated from the derived

method above. This time difference of arrival means range difference is taken as

input and by solving those hyperbolic equation mentioned above we found the

source position as (x0,y0,z0).

This method applied to the projectile path of 1800 samples. The maximum

range of 100km and height varies from zero to 35km approximately. In this simu-

lation total, seven different locations are considered for receiver deployment. The

proposed algorithm for estimating position using the TDOA method takes input

of four different receivers so simulation was run on a total of 35 different com-

binations. All combinations of receiver measurements in different planes were

analyzed. The behavior of all kinds of measurement was analyzed throughout the

total path followed by the target. For showing the results of simulation we have

considered only the best case and worst case.
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Figure 5.2: Range vs Height (Best case)

Figure 5.3: Range vs Height (Worst case)

Fig 5.2 and Fig 5.3 are showing the results of best and worst-case respec-

tively in range vs height plane. In this case, it is clear that best-case results are

overlapping but the differences of measurement are clearly visible in worst-case.

Fig 5.4 and Fig 5.5 are showing component-wise errors. An error was cal-

culated by subtracting the actual and measured position in all three dimensions.

Best case errors are in the order of 1 meter at 100km range. The worst-case maxi-

mum error reached up to 3.5km. All component errors are increasing as the range

of the target increases. A similar pattern of component error was observed in all
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Figure 5.4: Range vs Position errors(Best case)

Figure 5.5: Range vs Position errors(Worst case)

cases. Another important observation is that in all cases the major contribution of

error comes in the z-axis. As all the receivers are along the same x-y plane so this

hyperbolic equation solution produces more error in the z-axis.

Range difference error is calculated in the following manner. Ri j Error =

Ri j− r

Ri j Calculated from the time difference of arrival and ri j is calculated from

the measured target position.
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Figure 5.6: Range vs Range difference errors(Best case)

Figure 5.7: Range vs Range difference errors(Worst case)
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Figure 5.8: Range vs Avg range difference errors and position error(Best case)

Figure 5.9: Range vs Avg range difference errors and position error(Worst case)

Fig 5.6 and Fig 5.7 are showing the range difference error for all four com-

binations. Best case errors are in the order of .2 meter at 100km range. The

worst-case maximum error reached up to 600meter. All combination errors are

increasing as the range of the target increases. But at the end portion of the target

location error is decreasing. As per the profile of the target, height is decreasing

at the end portion. So the relation of range difference error depends upon range

and height both. A similar pattern of error was observed in all cases.

Fig 5.8 and Fig 5.9 are showing the position error and average range differ-
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Figure 5.10: Range vs Error factor (position error /Avg range difference er-

rors)(Best case)

ence error. An error was calculated by subtracting the actual and measured posi-

tion. Best case errors are in the order of 1 meter at 100km range. The worst-case

maximum error reached up to 3.5km. Position error and average range difference

error both are increasing as the range of the target increases. A similar pattern of

error was observed in all cases.

To estimate the position measurement error average range difference error

can be considered. In all cases, the relation between position errors varies linearly

with average range difference error. And the same kind of results was observed in

all cases from best case to worst case.

An error factor is calculated just dividing position error by average range

difference error. Fig 5.10 and Fig 5.11 show the relation between error factors

with range. The error factor is increasing as the range of target increases. A major

observation is that error factor and range of target relationship is similar in all of

the cases. In this best and worst case, it is clearly visible.
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Figure 5.11: Range vs Error factor (position error /Avg range difference er-

rors)(Worst case)

5.1.4 Finding and Discussion

Target position finding algorithm using time difference of arrival considers four

numbers of the receiver at a time to solve the hyperbolic equations. In our exper-

iments, we considered four receivers at a time out of seven receivers, so we have

a total of 35 numbers of combinations for the position finding of a target. As per

the simulation results, it is clear that by calculating the average range difference

error, we can prioritize the set of four-receiver location for minimum possible tar-

get position measurement error. The results were also able to establish the target

position measurement error boundary. Error factor is calculated and the relation

between target range and error factor is found linear irrespective of any combi-

nation of receivers. So our approach is to find out the best possible combination

of the receiver along with the target position measurement error boundary. The

future study may be focused to find out more factors that can directly help in re-

ducing the error boundary and prioritizing receivers. The probable target location
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zone could be formed using an error boundary. From this zone, one can simply

assume the location of an incoming target. We are developing an automation tool,

which will provide the position and measurement accuracy level of an incoming

target with the help of the above result. It would be helpful for the aviation sector.
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